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General Setup

Maximization Problem

Let f be a function from X to the poset (Y ,≤), and let D ⊂ X . A
maximization problem takes the form

max
x∈X

f (x) s.t. x ∈ D

where f is called the objective function, x is called the choice variable,
and D is called the constraint set or feasible set. A point x ∈ X is said
to be feasible iff x ∈ D.
The set of maximizers, or maximum points, of this problem is defined as

argmax
x∈X

{f (x) : x ∈ D} := {x∗ ∈ D : f (x∗) ≥ f (x) ∀ x ∈ D}

If the set of maximizers is nonempty, then this problem is said to have a
solution. In this case, we define the maximum, or the maximum value,
of this problem as f (x∗), where x∗ is an arbitrary maximizer, and denote
it as maxx∈X {f (x) : x ∈ D}.
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Do we always have a maximizer?

The maximum does not need to exist in general, i.e the set of maximizers
can be empty. Consider for example the function :

f : (0, 1) → (0, 1)

x 7→ x

This function does not have a maximum because for every point x ∈ (0, 1)
I can find a point x ′ ∈ (0, 1) such that f (x ′) > f (x) (by moving arbitrarily
close to 1). In other words, the set f ((0, 1)) does not have a maximum.
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(Still) on Maximizers

By anti-simmetry of the partial order on Y , the maximum - if it exists
- is a well defined (unique) element of Y

max
x∈D

f (x) ∈ Y

The set of maximizers, by contrast, is a subset of D in general :

argmax
x∈D

f (x) ⊂ D

If (Y ,≤) has the least upper bound property, then we know that the
following supremum always exist :

sup
x∈D

f (x).

Then, the question of whether a maximum exists can be interpreted
as whether this supremum is attained by a point in D.
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Types of Optimization Problems

“Unconstrained optimization”: D is an open set of a metric space.

“Optimization under equality constraint”: D is of the form
D = {x ∈ X , ∀i ∈ I , gi (x) = 0}, where gi : X → R for all i ∈ I .

“Optimization under inequality constraint”: D is of the form
D = {x ∈ X ,∀i ∈ I , gi (x) ≤ 0}, where gi : X → R for all i ∈ I .

We say that x0 ∈ D is a global maximum if f (x0) ≥ f (x) for all
x ∈ D.

We say that x0 ∈ D is a local maximum if there exists a neighborhood
of x0 in D such that f (x0) ≥ f (x) for all x in this neighborhood.
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Examples

1 Choice Problem
max
x∈X

f (x)

2 Best Response

bri (a−i ) = argmax
ai∈A

ui (ai , a−i )

3 Least Squares

min
β∈R

n∑
i=1

|yi − βxi |2
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Existence of Maximizers

The first issue about maximization problems is the existence of maximizers.
Remember that Weierstrass theorem states that a continuous real-valued

function on a compact set must achieve its maximum/minimum.

Weierstrass

Let f : X → R, D ⊂ X nonempty, and consider the maximization problem

max
x∈X

f (x) s.t. x ∈ D

If there exists a metric d defined on the set D s.t. (D, d) is a compact
metric space, and the function f |D , i.e. f restricted in D, is continuous
w.r.t. the metric d , then

argmax
x∈X

{f (x) : x ∈ D} ≠ ∅

i.e. the maximization problem has a solution.
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Uniqueness

Once we establish existence, we can think about uniqueness

Use (quasi) concavity → strict quasi concavity implies uniqueness, as
with two maxima we could take a convex combination and do better.

Formally:

Proposition 2.1 - Uniqueness

Let X be a set in real vector space (V ,+, ·), and let f : X → R. If D ⊂ X
is a convex set in V and f |D is a strictly quasi-concave function, then
argmaxx∈X {f (x) : x ∈ D} contains at most one point, i.e. the
maximization problem has a unique maximizer if it exists.
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Uniqueness (ctd.)

In the proposition above, if we replace strict quasi-concavity by
quasi-concavity, then we don’t have this uniqueness result. Instead we
have the following result.

Proposition 2.3

Let X be a set in real vector space (V ,+, ·), and let f : X → R. If D ⊂ X
is a convex set in V and f |D is a quasi-concave function, then
argmaxx∈X {f (x) : x ∈ D} is a convex set in V .

These are just guidelines... showing existence and uniqueness of
maximizers will require ad-hoc strategies
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Unconstrained Optimization on Rn

We now focus on functions f : X ⊆ Rn → R
Unconstrained optimization problem: the set over which the
optimization problem is defined is an open set in Rn

We first consider single variable functions.

The next theorem provides the necessary first order condition and the
necessary second order condition for an interior maximizer.

The result does not require that D is open but restricts the attention
to interior maximizers which is equivalent (we ignore maximizers on
the boundary).
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FOC and SOC

Theorem 3.1

Let X be a set in R, and D ⊂ X . Let f : X → R, and consider the problem

max
x∈X

f (x) s.t. x ∈ D

and let x∗ ∈ int (D) be a maximizer of the problem.
(1) If f is differentiable at x∗, then f ′ (x∗) = 0.
(2) If f is differentiable in an open ball around x∗, and is twice
differentiable at x∗, then f ′′ (x∗) ≤ 0.
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FOC and SOC

Openness plays such a crucial role: we can consider derivatives at
every point in the interior, which gives us information about local
variations of the function

These are necessary conditions for x∗ to be a maximizer and
equivalently characterize local maximizers (which is a necessary
condition to be a global maximizer)
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FOC and SOC for multivariate functions

Theorem 3.2

Let X be a set in Rn, and D ⊂ X . Let f : X → R, and consider the
problem

max
x∈X

f (x) s.t. x ∈ D

and let x∗ ∈ int (D) be a maximizer of the problem.
(1) If f is differentiable at x∗, then ∇f (x∗) = 0.
(2) If f is differentiable in an open ball around x∗, and is twice
differentiable at x∗, then Hf (x

∗) is negative semi-definite.
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FOC

To maximize f , in practice, we take partials of f and set them equal
to 0. This is the (necessary) first order condition (FOC) of the
maximization problem.

Suppose x is a maximizer and take Taylor approximation:

f (x + h) = f (x) +∇f (x) · h + o(||h||)

hence ∇f (x) · h ≤ 0 for h small enough as f (x) ≥ f (x + h)

Now, set h = t∇f (x) for t small enough:

∇f (x) · (t∇f (x)) = t||∇f (x)||2 ≤ 0

Which is only possible if ∇f (x) = 0.
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SOC

Negative semi-definite Hf (x
∗) is sometimes called the necessary

second order condition (necessary SOC) of the maximization
problem.

Suppose x is a candidate maximizer, so that ∇f (x) = 0:

f (x + h) = f (x) +∇f (x) · h +
1

2
hTHf (x)h + o(||h||2)

= f (x) +
1

2
hTHf (x)h + o(||h||2)

hence when h small :

f (x + h)− f (x) ≈ 1

2
hTHf (x)h

so if Hf (x) is negative semi-definite, f (x + h)− f (x) ≤ 0 for all h
small enough, i.e, f (x ′) ≤ f (x) for x ′ in some small ball around x , in
other words x is a local maximum.
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Summarizing

Partials equal to 0 are a necessary (not sufficient condition)

The second derivative can give local sufficient conditions

General recipe:

Solve for all solutions to FOC. If there are many, SOC can help filter

Find the point with the highest value

Check if the function takes on a higher value along the boundary
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Concave Functions Are Cool!

Concave functions really simplify our job...

Theorem 3.3

Let X be a convex set in Rn, and D ⊂ X . Let f : X → R be a concave
function, and consider the problem

max
x∈X

f (x) s.t. x ∈ D

If f is differentiable at x∗ ∈ int (X ) ∩ D, and ∇f (x∗) = 0, then x∗ is a
maximizer of the problem.

When our function is concave, having partials equal to 0 is a sufficient
condition!
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Quasi-Concave Functions Are Also Cool (but not quite)!

If we replace the concavity assumption in the theorem above by
quasi-concavity, the sufficiency result does not hold. Eg. f : R → R,
f (x) = x3. 0 ∈ int(R) and f ′(0) = 0, but 0 is not a maximizer on
D = R.
But...

Theorem 3.4

Let X be a convex set in Rn, and D ⊂ X . Let f : X → R be a
quasi-concave function, and consider the problem

max
x∈X

f (x) s.t. x ∈ D

Suppose that
(1) f is differentiable at x∗ ∈ int (X ) ∩ D, ∇f (x∗) = 0, and
(2) f is C 2 in some open ball around x∗, and Hf (x

∗) is negative definite.
Then x∗ is a maximizer of the problem.
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Optimization under Equality Constraints

We now know to deal with interior points: this provided us with a
method to deal with open sets and some non-open sets by considering
”individually” all boundary and non-differentiability points as
candidates.

What if we have ”a lot” of boundary points?

We consider equality constraints: all admissible points are boundary
points so we cannot use the interior characterization directly.
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Optimization under Equality Constraints

Let f : Rn → R and g : Rn → Rk , with g(x) = (g1(x), ..., gk(x)) and
c = (c1, ..., ck) ∈ Rk . The set {x ∈ Rn, g(x) = c} is called a level set
of g , and is pinned down by the choice of the constant c . We
consider the problem of optimizing f on a level set of g :

max
x∈{x ,g(x)=c}

f (x)

which we rewrite equivalently in the constrained form :

max
x∈Rn

f (x)

s.t. g(x) = c

Where g(x) = c explicitly rewrites as gi (x) = ci for all i :
g1(x) = c1
...

gk(x) = ck
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Parametrization

Sometimes we can rewrite the level set as a parametrized region,
where the parameter belongs to an open set, so we can rewrite the
whole problem as an unconstrained problem.

For example:

max
c1,c2

ln c1 + α ln c2

s.t. p1c1 + p2c2 = M

We can write:

c1 =
M − p2c2

p1

and solve

max
c2

ln
M − p2c2

p1
+ α ln c2
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Lagrange

Sometimes we can’t parametrize, but we can develop tools to deal
with equality constraints directly when the functions f and g are
differentiable.

Theorem 4.2 - 1 constraint

Let f , g : D ⊂ Rn → R and x∗ ∈ int(D). If x∗ is a local extremum of f
under the constraint g = c , if f is differentiable at x∗, g is differentiable in
a neighborhood of x∗ and if ∇g(x∗) ̸= 0, then there exists λ ∈ R such
that :

∇f (x∗) = λ∇g(x∗)

λ is called the Lagrange multiplier associated to the constraint.
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Interpretation of Lagrange

At an extremum, the gradient of the objective function must be
colinear to the gradient of the constraint

We can see with one constraint that the gradient of f at an optimum
has to be orthogonal to the line tangent to the space {g(x) = c} at
that point.

This captures the idea that ”otherwise, we could move a little bit
while staying in the constraint space and improve f ”.
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Lagrangian function

Define the Lagrangian of the problem as the function
L : Rn × R → R such that :

L(x , λ) = f (x)− λ(g(x)− c)

The previous theorem rewrites as follows : if x∗ is an extremum of f
under the constraint g = c , then there exists λ such that (x∗, λ) is a
critical point of L, i.e :

∇L(x∗, λ) = 0 ⇔

{
∂L
∂x (x

∗, λ) = 0
∂L
∂λ (x

∗, λ) = 0

⇔

{
∇f (x∗)− λ∇g(x∗) = 0

g(x∗)− c = 0
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Example

An example from your PS: Find the maximum and minimum of
f (x , y) = x2 − y2 on the unit circle x2 + y2 = 1 using the
Kuhn-Tucker method. Using the substitution y2 = 1− x2 solve the
same problem as a single variable unconstrained problem. Do you get
the same results? Why or why not?
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Extending to more than one constraint

Theorem 4.3

Let f , g1, ..., gk : D ⊂ Rn → R and c = (c1, ..., ck) ∈ Rk . If x∗ ∈ int(D) is
a local extremum of f under the constraints gi = ci for all i and if

1 f is differentiable at x∗

2 g is C 1 in a neighborhood of x∗

3 the family (∇g1(x
∗), ...,∇gk(x

∗)) is independent

then there exists (λ1, ..., λk) ∈ Rk such that :

∇f (x∗) =
k∑

i=1

λi∇gi (x
∗)
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Extending to more than one constraint

The Lagrangian with several constraints is defined as :

L(x , λ) = f (x)−
k∑

i=1

λi (gi (x)− ci ) = f (x)− λ · (g(x)− c)

If x∗ is an extremum of f under the constraint g = c , then there
exists λ ∈ Rk such that (x∗, λ) is a critical point of L, i.e :

∇L(x∗, λ) = 0 ⇔

{
∂L
∂xj

(x∗, λ) = 0
∂L
∂λi

(x∗, λ) = 0

⇔

{
∇f (x∗)−

∑k
i=1 λi∇gi (x

∗) = 0

gi (x
∗)− ci = 0 ∀i
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Inequality Constraints: KKT

Inequality constraints are more complex in nature because they might
not bind : if we have a constraint g(x) ≤ c , and it turns out that at
the optimum g(x) < c , then x is essentially an interior point and it is
”as if” the constraint was not there locally.

On the other if we saturate the constraint, i.e g(x) = c at the
optimum, then we need a machinery similar to that we just
introduced to deal with an extra equality constraint – given the
admissible directions of increase are locally reduced.
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Constraint Qualification

Definition 5.1

Let X be an open set in Rn, and let f : X → R, g : X → Rk , and
h : X → Rm be C 1 functions. Consider the problem

max
x∈X

f (x) s.t. g (x) ≥ 0 and h (x) = 0

For a feasible point x̂ ∈ X , the inequality constraint gj (x) ≥ 0 is said to
be binding at x̂ iff gj (x̂) = 0.
We say that the constraint qualification (CQ) holds at x̂ iff the
derivatives of all binding constraints

{∇gj (x̂)}{j :gjbinding at x̂} ∪ {∇hl (x̂)}ml=1

in Rn are linearly independent; otherwise we say that the constraint
qualification (CQ) fails at x̂ .
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The Problem

We are studying the problem:

max
x∈X

f (x) s.t. x ∈ D

where the constraint set D is described by a set of k weak inequalities
and a set of m equalities:

D := {x ∈ X : g (x) ≥ 0 and h (x) = 0}

We define the Lagrangian function as

L (x , λ, µ) = f (x) + λTg (x) + µTh (x)

= f (x) +
k∑

j=1

λjgj (x) +
m∑
l=1

µlhl (x)

and λj ’s and µl ’s are called the Lagrangian multipliers.
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KKT

Kuhn-Tucker

Let X be an open set in Rn, and let f : X → R, g : X → Rk , and
h : X → Rm be C 1 functions. Consider the problem

max
x∈X

f (x) s.t. g (x) ≥ 0 and h (x) = 0

If x∗ is a maximizer of the problem above, and CQ holds at x∗, then there
exists a unique (λ, µ) ∈ Rk

+ × Rm s.t. the following two conditions hold:
(1) First order condition (FOC):

∇f (x∗) + λTg ′ (x∗) + µTh′ (x∗) = 0
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KKT

Kuhn-Tucker

(2) Complementary slackness condition (CSC):

hl(x
∗) = 0

for each l ∈ {1, . . . ,m}.

λj ≥ 0, gj (x
∗) ≥ 0, and λjgj (x

∗) = 0

for each j ∈ {1, . . . , k}.
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KKT

The FOC in the theorem above is essentially

∇f (x∗) +
k∑

j=1

λj∇gj (x
∗) +

m∑
l=1

µl∇hl (x
∗) = 0

or equivalently, for each i ∈ {1, . . . , n}

∂f

∂xi
(x∗) +

k∑
j=1

λj
∂gj
∂xi

(x∗) +
m∑
l=1

µl
∂hl
∂xi

(x∗) = 0
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KKT

Which is essentially setting the partials of the Lagrangian L(x , λ, µ)
w.r.t. xi , i = 1, 2, ..., n to zero:

∂L
∂xi

(x∗, λ, µ) = 0

Simply put, Kuhn-Tucker theorem states that if x∗ is a maximizer and
satisfies CQ, then there exist λ and µ s.t. (x∗, λ, µ) satisfies FOC +
CSC.
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KKT

In practice, we often write down the following system of conditions
x ∈ X
∂f
∂xi

(x) +
∑k

j=1 λj
∂gj
∂xi

(x) +
∑m

l=1 µl
∂hl
∂xi

(x) = 0, ∀ i = 1, . . . n

hl (x) = 0, ∀ l = 1, . . .m
λj ≥ 0, gj (x) ≥ 0, and λjgj (x) = 0, ∀ j = 1, . . . , k

which is sometimes known as the Kuhn-Tucker condition.
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CQ failure

Notice that the theorem only works for maximizer x∗’s at which CQ
holds.

If CQ fails at x∗, then there may not exist (λ, µ) s.t. (x∗, λ, µ)
satisfies FOC and CSC, even if x∗ is a maximizer of the problem.

Therefore, we may never be able to find such maximizers by solving
the K-T condition.

Example:
max

(x1,x2)∈R2
−x2

s.t.
x21 − x32 = 0
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KKT Example

We are going to apply KT theorem by solving this problem together:

max
(x1,x2)∈R2

+

xα1 x
1−α
2

s.t.
p1x1 + p2x2 ≤ m

where α ∈ (0, 1), p1, p2 ∈ R++, and m ∈ R+ are parameters.
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Sufficient Conditions

The K-T provides a condition that is necessary for maximizers at
which CQ holds, and it is by no means a sufficient condition.

However...

Sufficiency KKT

max
x∈X

f (x) s.t. g (x) ≥ 0 and h (x) = 0

If x∗ is feasible, and there exists (λ, µ) ∈ Rk
+× Rm s.t. the following three

conditions hold
(1) FOC
(2) CSC
(3) The Lagrangian Lλ,µ : X → R defined as

Lλ,µ (x) := f (x) + λTg (x) + µTh (x)

is a concave function, then x∗ is a maximizer of this problem.
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Sufficiency (ctd.)

The additional requirement (3) requires the Lagrangian function to be
concave in x . According to this theorem, when we solve the K-T
condition for type 1 candidates, if we happen to find a solution(
x̂ , λ̂, µ̂

)
to K-T condition s.t. under this

(
λ̂, µ̂

)
the Lagrangian is a

concave function in x , then we can immediately conclude that x̂ is a
maximizer of the problem.

There are other theorems for sufficiency (all involving quasi-concavity
and or concavity) - see Th 5.6, 5.7 on the lecture notes
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Comparative Statics

Let’s consider the parameterized optimization problem P (α):

max
x∈X

f (x , α) s.t. g (x , α) ≥ 0 and h (x , α) = 0

where the parameter α is taken from some set A.

For each α, if the problem P (α) has a solution, then we can calculate
the maximum value of the problem P (α), and define it as f ∗ (α).

Then it might be interesting to study how the value function f ∗ (α)
changes as the parameter α changes.
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Envelope Thm

Envelope

Let X be an open set in Rn, and A be an open set of parameters in Rs .
Let f : X × A → R, g : X × A → Rk , and h : X × A → Rm be C 1

functions. For each parameter α ∈ A, define the problem P (α) as

max
x∈X

f (x , α) s.t. g (x , α) ≥ 0 and h (x , α) = 0

Let Â := {α ∈ A : argmaxP (α) ̸= ∅}, and define the value function
f ∗ : Â → R as

f ∗ (α) := max
x∈X

{f (x , α) : g (x , α) ≥ 0 and h (x , α) = 0}

Andrea Ciccarone Optimization - MA Math Camp 2023 August 30, 2023 41 / 44



Envelope

Envelope

For parameter α∗ ∈ A, suppose:
(1) In the problem P (α∗), there is a unique maximizer x∗, and CQ holds
at x∗.
(2) There exists ε > 0 and r > 0 s.t. ∀ α ∈ Bε (α

∗),
(argmaxP (α)) ∩ Br (x

∗) ̸= ∅.
Then the value function f ∗ is differentiable at α∗, and

f ∗′ (α∗) =
d

dα
L (x∗, λ∗, µ∗, α)

∣∣∣∣
α=α∗

=
d

dα
f (x∗, α)

∣∣∣∣
α=α∗

+ λ∗T d

dα
g (x∗, α)

∣∣∣∣
α=α∗

+ µ∗T d

dα
h (x∗, α)

∣∣∣∣
α=α∗

where λ∗ and µ∗ are the unique Lagrangian multipliers found by K-T
theorem for the problem P (α∗).
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What??

(1) guarantees that K-T theorem applies to the problem P (α∗), and
so we can find a unique λ∗ and µ∗ s.t. (x∗, λ∗, µ∗) satisfies FOC and
CSC. Condition (2) implies that f ∗ (α) is well-defined for any
α ∈ Bε (α

∗), and so we can talk about differentiability of f ∗ at α∗.

The theorem is basically saying that instead of deriving the value
function and then compute derivative, we can simply take the
derivative the Lagrangian wrt α at the optimum - this is often simpler
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That’s it!

Last slide of math camp! Thank you guys!!
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