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This lecture first introduces the concepts of correspondences and their continuity, and then
discuss two important results, Kakutani’s fixed point theorem and Berge’s theorem of maximum.
You may refer to FMEA Chapter 14.1, 14.2, and 14.4.

1 Definitions

Definition 1.1. A correspondence F from X to Y is a set-valued function that associates every
element in X a subset of Y 1.

F :X ⇒ Y

x 7→ F (x)

The set X is called the domain of the correspondence F , and Y is called the codomain of F .
F (x) is called the image of point x ∈ X.

You may consider the concept of correspondence as a generalization of functions, in the sense that
F (x) is a set in Y instead of an element in Y . Clearly, a single-valued correspondence F : X ⇒ Y
can be viewed as a function from X to Y .

Listed below are some terminologies that we use to describe the properties of correspondences.

∗The present lecture notes were largely based on math camp materials from César Barilla, Palaash Bhargava, Paul
Koh, and Xuan Li. All errors in this document are mine. If you find a typo or an error, please send me an email at
cesar.barilla@columbia.edu.

1By the definition above, a correspondence is a relation, and so this terminology is in fact a redundant one.
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Definition 1.2. A correspondence F : X ⇒ Y is said to be XXX-valued at x0 ∈ X iff F (x0) is a
XXX set. If F is XXX-valued at all x0 ∈ X, we say F is XXX-valued.

These ”XXX” can be

1. non-empty

2. single (singleton)

3. open

4. closed

5. compact

6. convex

Notice that the 3 - 5 above requires Y to be a metric space (Y, dY ), and 6 requires Y to be a
(real) vector space (Y,+, ·).

1.1 Upper Hemi-continuity

Similar to functions, it is possible to talk about continuity of a correspondence if its domain and
codomain are both metric spaces. However, there are two distinct notions of continuity for corre-
spondences, known as upper hemi-continuity and lower hemi-continuity, and they capture different
aspects of continuity of a correspondence. Let’s first look at upper hemi-continuity.

Definition 1.3. Let (X, dX) and (Y, dY ) be metric spaces. The correspondence F : X ⇒ Y is said
to be upper hemi-continuous (uhc) at x0 ∈ X iff ∀ open set U in (Y, dY ) s.t. F (x0) ⊂ U , ∃
δ > 0 s.t. F

(
Bδ (x0)

)
⊂ U .

The correspondence F : X ⇒ Y is said to be upper hemi-continuous (uhc) iff it is upper
hemi-continuous at x0 for all x0 ∈ X.

The definition requires that whenever the open set U covers the entire image of the point x0,
then it must also entirely cover all nearby images. What is not allowed by uhc at x0 is sudden
appearance of large chunk of image when x deviates from x0.

For example, consider the correspondence F1 : R ⇒ R defined as2

F1 (x) :=

{
{0} , if x ≤ 0
[−1, 1] , if x > 0

Clearly F1 fails to be uhc at 0, because if we let U :=
(
−1/2, 1/2

)
, whenever x moves away a little

from 0 to the right, the image F1 (x) becomes [−1, 1], which is not covered by U . The problem of
this correspondence at 0 is that many new points suddenly appear when x deviate from 0 to the
right, and this is a violation of uhc. Therefore, uhc can be intuitively interpreted as ”no sudden
appearance of large chunk of image when deviating from a point”.

Consider a slightly different correspondence F2 : R ⇒ R defined as

F2 (x) :=

{
{0} , if x < 0
[−1, 1] , if x ≥ 0

2In Rn, we use the Euclidean metric d2 by default.
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The image of F2 at 0 is [−1, 1], and so there is no sudden appearance of image when deviating from
0. Therefore, F2 is uhc at 0. Clearly, F2 is also uhc at all other points in R, and so F2 is uhc.

Uhc does not allow sudden appearance of image when deviating from a point, but it allows
”smooth changes” in the image when deviating from a point, if the correspondence is closed-valued
at this point. For example, consider the correspondence F3 : R ⇒ R defined as

F3 (x) := [x, x+ 1]

for any x ∈ R. Under F3, the image F3 (x) = [x, x+ 1] changes ”smoothly” when x changes, and it
can be shown that F3 is uhc.

Claim 1.4. The correspondence F3 : R ⇒ R defined above is uhc.

Proof. Take any x0 ∈ R. WTS: F3 is uhc at x0.
Take any open set U ⊃ [x0, x0 + 1]. WTS: ∃ δ > 0 s.t. U ⊃ F (x) for any x ∈ (x0 − δ, x0 + δ).
Because x0 and x0 + 1 are in the open set U , they are interior points of U , and so ∃ δ > 0 s.t.

(x0 − δ, x0 + δ) ⊂ U

(x0 + 1− δ, x0 + 1 + δ) ⊂ U

Therefore, we have (x0 − δ, x0 + 1 + δ) ⊂ U .
For any x ∈ (x0 − δ, x0 + δ), we have

F (x) = [x, x+ 1] ⊂ (x0 − δ, x0 + 1 + δ) ⊂ U

However, when the correspondence is not closed-valued, then even smooth changes in the image
may violate uhc. For example, consider a slightly different correspondence F4 : R ⇒ R defined as

F4 (x) := (x, x+ 1)

It can be shown that it is not uhc at any point in R. To see this, for each x0 ∈ R, let U := F4 (x0) :=
(x0, x0 + 1), and U cannot cover F (x) as long as x ̸= x0.

In applications, however, we almost always work with closed-valued correspondences, in which
case uhc allows smooth changes, but does not allow sudden appearance of image.

For single-valued correspondences, uhc is equivalent to continuity of functions.

Proposition 1.5. Let (X, dX) and (Y, dY ) be metric spaces. Consider a single-valued correspon-
dence F : X ⇒ Y . Define f : X → Y as f (x) := y s.t. y ∈ F (x). Then F is uhc at x0 ∈ X iff f
is continuous at x0.

This proof is straightforward, and is left as an exercise.
For compact-valued correspondences, there is a sequential definition of uhc, which is formulated

in the following proposition3.

Proposition 1.6. Let (X, dX) and (Y, dY ) be metric spaces. Consider a correspondence F : X ⇒ Y ,
and let x0 ∈ X. Then the following two statements are equivalent:

(1) F is compact-valued at x0, and F is uhc at x0.
(2) For any sequence (xn) in X convergent to x0, any sequence (yn) s.t. yn ∈ F (xn) for each

n ∈ N, there exists a subsequence
(
ynk

)
convergent to some y0 ∈ F (x0).

3This is the definition of uhc in the book by SLP, who only study compact-valued correspondences.
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Proof. (1) ⇒ (2):
Take any sequence (xn) in X convergent to x0, any sequence (yn) s.t. yn ∈ F (xn) for each

n ∈ N.
WTS: There exists a subsequence

(
ynk

)
convergent to some y0 ∈ F (x0).

For each k ∈ N, consider the set

Uk :=
⋃

y∈F (x0)

B1/k (y)

Because arbitrary union of opens is still open, we know that Uk is an open set. By construction
Uk ⊃ F (x0), and so by uhc of F at x0, there exists δk > 0 s.t. F

(
Bδk (x0)

)
⊂ Uk. Because xn → x0,

there exists Nk s.t. xn ∈ Bδk (x0), and thus yn ∈ Uk for any n > Nk.
Therefore, we can find a subsequence

(
ynk

)
s.t. ynk

∈ Uk for each k ∈ N. By construction of
Uk, for each k, there exists zk ∈ F (x0) s.t. dY

(
ynk

, zk
)
< 1/k. Because F is compact-valued at x0,

we know that F (x0) is compact in (Y, dY ). So there exists a subsequence
(
zkl

)
convergent to some

y0 ∈ F (x0). So we have dY
(
zkl , y0

)
→ 0, and

0 ≤ dY

(
ynkl

, y0

)
≤ dY

(
ynkl

, zkl

)
+ dY

(
zkl , y0

)
<

1

kl
+ dY

(
zkl , y0

)
→ 0 + 0 = 0

Therefore, we have dY

(
ynkl

, y0

)
→ 0, which means ynkl

→ y0. Therefore, we have found a subse-

quence of (yn) that converges to some point in F (x0).
(1) ⇐ (2):
(a) WTS: F is compact-valued at x0.
Take any sequence (yn) in F (x0). WTS: There exists a subsequence

(
ynk

)
convergent to some

y0 ∈ F (x0).
Let xn = x0 for all n ∈ N. Then we have xn → x0 and yn ∈ F (xn) for each n ∈ N. By

assumption, there exists a subsequence
(
ynk

)
convergent to some y0 ∈ F (x0).

(b) WTS: F is uhc at x0.
Suppose that F is not uhc at x0. Then ∃ U open in (X, dX) s.t. U ⊃ F (x0), but ∀ δ > 0 we have

U ̸⊃ F
(
Bδ (x0)

)
. Then for any n ∈ N, we have U ̸⊃ F

(
B1/n (x0)

)
, i.e. there exists xn ∈ B1/n (x0)

and yn ∈ F (xn) s.t. yn /∈ U . Because xn → x0, by assumption there exists a subsequence
(
ynk

)
convergent to some y0 ∈ F (x0).

Because
(
ynk

)
is in Y \U , which is closed in (Y, dY ), we have y0 ∈ Y \U , and so y0 /∈ F (x0).

Contradiction.

Without compact-valuedness, uhc alone does not imply property (2) in the proposition above.
For example, consider F5 : R ⇒ R defined as

F5 (x) = (0, 1)

for any x ∈ R. Clearly, F5 is uhc everywhere, but it does not satisfy property (2) at any x0 ∈ R,
since compact-valuedness is necessary for property (2).

1.2 Closed Graph Property

There is a concept, called closed graph property, that is closely related to uhc.
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Definition 1.7. Let (X, dX) and (Y, dY ) be metric spaces. The correspondence F : X ⇒ Y is
said to have closed graph property (cgp) at x0 ∈ X iff ∀ sequence (xn) in X convergent to x0,
yn ∈ F (xn) for each n ∈ N, and yn → y0 ∈ Y , we have y0 ∈ F (x0).

The correspondence F : X ⇒ Y is said to have closed graph property (cgp) iff it has closed
graph property at x0 for all x0 ∈ X.

Clearly, cgp implies closed-valuedness.

Claim 1.8. Let (X, dX) and (Y, dY ) be metric spaces. If the correspondence F : X ⇒ Y is cgp at
x0 ∈ X, then it is closed-valued at x0.

Proof. Take any sequence (yn) in F (x0) convergent to y0 ∈ Y . WTS: y0 ∈ F (x0).
Let xn = x0 for all n ∈ N, then we have xn → x0, yn ∈ F (xn) for each n ∈ N, and yn → y0 ∈ Y .

By cgp, we have y0 ∈ F (x0).

The graph4 of a correspondence F : X ⇒ Y is defined as

Gr (F ) :=
{
(x, y) ∈ X × Y : y ∈ F (x)

}
For a correspondence F : X ⇒ Y , where (X, dX) and (Y, dY ) are metric spaces, the name of

the property ”closed graph property” comes from the fact that F has cgp (everywhere in X) iff its
graph is closed in (X × Y, dX×Y ), where the metric for the product space is defined as

dX×Y

(
(x, y) ,

(
x′, y′

))
:=

√[
dX (x, x′)

]2
+
[
dY (y, y′)

]2
for any (x, y) ,

(
x′, y′

)
∈ X × Y .

It can be shown that dX×Y as defined above is a valid metric for X × Y . Also, we can show
that (xn, yn) → (x0, y0) in (X × Y, dX×Y ) iff xn → x0 in (X, dX) and yn → y0 in (Y, dY ), and this
is left as an exercise.

Claim 1.9. Let (X, dX) and (Y, dY ) be metric spaces. Then a correspondence F : X ⇒ Y has cgp
iff Gr (F ) is closed in (X × Y, dX×Y ).

Proof. ⇒:
Take any

(
(xn, yn)

)
in Gr (F ) that is convergent to (x0, y0) ∈ X × Y . WTS: (x0, y0) ∈ Gr (F ).

Because (xn, yn) → (x0, y0), we have xn → x0 and yn → y0. Because (xn, yn) ∈ Gr (F ) for
all n, we have yn ∈ F (xn) for all n. Because F has cgp, we know that F has cgp at x0, and so
y0 ∈ F (x0), which implies (x0, y0) ∈ Gr (F ).

⇐:
Take any x0 ∈ X. WTS: F has cgp at x0.
Take any (xn) in X convergent to x0, yn ∈ F (xn) for each n ∈ N, and yn → y0 ∈ Y . WTS:

y0 ∈ F (x0).
Because xn → x0 and yn → y0, we have (xn, yn) → (x0, y0) in (X × Y, dX×Y ). Because yn ∈

F (xn) for each n, we have (xn, yn) ∈ Gr (F ) for each n. Because Gr (F ) is closed in (X × Y, dX×Y ),
we have (x0, y0) ∈ Gr (F ).

Closed graph property is closely related to uhc, and their relation is formulated by the following
two propositions.

4This is in fact a redundant definition since Gr (F ) = F , if we view F as a relation from X × Y .
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Proposition 1.10. Let (X, dX) and (Y, dY ) be metric spaces. If a correspondence F : X ⇒ Y is
uhc at x0 ∈ X, and is closed-valued at x0, then F has cgp at x0.

Proof. Take any sequence (xn) in X convergent to x0, yn ∈ F (xn) for each n ∈ N, and yn → y0 ∈ Y .
WTS: y0 ∈ F (x0).
Suppose y0 /∈ F (x0), i.e. y0 ∈ Y \F (x0). Because F is closed-valued at x0, Y \F (x0) is open in

(Y, dY ), and so ∃ ε > 0 s.t. B2ε(y0) ⊂ Y \F (x0). And the ”closed ball”

B̄ε (y0) :=
{
y ∈ Y : dY (y, y0) ≤ ε

}
is contained in B2ε(y0) and therefore in Y \F (x0), and therefore F (x0) ⊂ Y \B̄ε (y0). It can be
shown that a closed ball is a closed set (exercise), and F (x0) is covered by the open set Y \B̄ε (y0).
By uhc of F at x0, ∃ δ > 0 s.t. F

(
Bδ (x0)

)
⊂ Y \B̄ε (y0).

Because xn → x0 and yn → y0, there exists n̂ s.t. xn̂ ∈ Bδ (x0) and yn̂ ∈ B̄ε (y0). However, be-
cause F

(
Bδ (x0)

)
⊂ Y \B̄ε (y0), we have yn̂ ∈ F (xn̂) ⊂ F

(
Bδ (x0)

)
⊂ Y \B̄ε (y0), which contradicts

yn̂ ∈ B̄ε (y0).

The result above states that uhc implies cgp if we have closed-valuedness. Without closed-
valuedness, this implication does not hold since a uhc correspondence may not have closed-valuedness.
For example, consider F5 as previously defined. Clearly, F5 is uhc everywhere, but it does not have
cgp anywhere, since closed-valuedness is necessary for cgp.

A correspondence F : X ⇒ Y , where (X, dX) and (Y, dY ) are metric spaces, is said to be locally
bounded at x0 iff ∃ δ > 0 and a compact set K in (Y, dY ) s.t. F

(
Bδ (x0)

)
⊂ K.

The next proposition works in the other direction.

Proposition 1.11. Let (X, dX) and (Y, dY ) be metric spaces. If a correspondence F : X ⇒ Y has
cgp at x0 ∈ X, and F is locally bounded at x0, then F is uhc at x0.

The proof of this proposition is similar to the proof of Proposition 1.6, part (b) of the direction
”(1) ⇐ (2)”.

Proof. Suppose that F is not uhc at x0. Then ∃U open in (Y, dY ) s.t. F (x0) ⊂ U , but ∀δ > 0 we
have F (Bδ(x0)) ̸⊂ U . Then for any n ∈ N, we have F (B1/n(x0)) ̸⊂ U , i.e. there exists xn ∈ B1/n(x0)

and yn ∈ F (xn) s.t. yn ̸∈ U . By assumption there exists δ̂ > 0 and compact set K in (Y, dY ) s.t.
F (Bδ̂(x0)) ⊂ K. By construction, we have xn → x0, and so ∃N s.t. xn ∈ Bδ̂(x0) and so yn ∈ K for
any n > N .

By sequential compactness of K, there exists a subsequence (ynk
) of (yn)n>N convergent to some

y0 ∈ K. Because the subsequence (ynk
) ⊂ Y \U , which is closed, we have y0 ∈ Y \U . However,

because F has cgp at x0, and xnk
→ x0, ynk

∈ F (xnk
), ynk

→ y0, we have y0 ∈ F (x0) ⊂ U .
Contradiction.

The result above states that cgp implies uhc if we have local boundedness. Without local
boundedness, cgp does not imply uhc. For example, consider F6 : R ⇒ [0, 1) defined as

F6 (x) =

{
{ex} , x < 0
{0} , x ≥ 0

which is clearly not uhc at 0. However, F6 has cgp at 0. Notice that 1 is not in the codomain, and
so when xn converges to 0 from the negative real line, yn ∈ F (xn) does not converge. This is not
a violation of the proposition above, because F6 is not locally bounded at 0. Notice again that 1 is
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not in the codomain, and so we cannot find a compact set K in
(
[0, 1) , d2

)
to bound all images of

points nearby 0.
Another example is F7 : R ⇒ R defined as

F6 (x) =

{ {
1/x

}
, x ̸= 0

{0} , x = 0

As a consequence of the two propositions above, under closed-valuedness and local boundedness,
uhc and cgp are equivalent.

1.3 Lower Hemi-continuity

Now let’s define lower hemi-continuity.

Definition 1.12. Let (X, dX) and (Y, dY ) be metric spaces. The correspondence F : X ⇒ Y is said
to be lower hemi-continuous (lhc) at x0 ∈ X iff ∀ open set U in (Y, dY ) s.t. F (x0) ∩ U ̸= ∅, ∃
δ > 0 s.t. F (x) ∩ U ̸= ∅ for any x ∈ Bδ (x0).

The correspondence F : X ⇒ Y is said to be lower hemi-continuous (lhc) iff it is lower
hemi-continuous at x0 for all x0 ∈ X.

The definition requires that whenever the open set U covers a part of the image of the point
x0, then it must also cover a part of all nearby images. What is not allowed by lhc at x0 is sudden
disappearance of large chunk of image when x deviates from x0.

For example, consider the correspondence F2 : R ⇒ R

F2 (x) :=

{
{0} , if x < 0
[−1, 1] , if x ≥ 0

as previously defined. Clearly F2 fails to be lhc at 0, because if we let U :=
(
1/2, 3/2

)
, whenever

x moves away a little from 0 to the left, the image F2 (x) becomes {0}, which does not share
an intersection with U . The problem of this correspondence at 0 is that many points suddenly
disappear when x deviate from 0 to the left, and this is a violation lhc. Therefore, lhc can be
intuitively interpreted as ”no sudden disappearance of large chunk of image when deviating from a
point”.

Consider the slightly different correspondence F1 : R ⇒ R

F1 (x) :=

{
{0} , if x ≤ 0
[−1, 1] , if x > 0

as previously defined. The image of F1 at 0 is {0}, and so there is no sudden disappearance of
image when deviating from 0. Therefore, F1 is lhc at 0. Clearly, F1 is also lhc at all other points in
R, and so F1 is lhc.

Lhc does not allow sudden disappearance of image when deviating from a point, but it allows
”smooth changes” in the image when deviating from a point. For example, consider the correspon-
dence F3 : R ⇒ R

F3 (x) := [x, x+ 1]

for any x ∈ R as previously defined. Under F3, the image F3 (x) = [x, x+ 1] changes ”smoothly”
when x changes, and it can be shown that F3 is lhc.

Claim 1.13. The correspondence F3 : R ⇒ R defined above is lhc.
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Proof. Take any x0 ∈ R. WTS: F3 is lhc at x0.
Take any open set U s.t. [x0, x0 + 1] ∩ U ̸= ∅.
WTS: ∃ δ > 0 s.t. [x, x+ 1] ∩ U ̸= ∅ for any x ∈ (x0 − δ, x0 + δ).
Let x̂ ∈ [x0, x0 + 1] ∩ U . Because U is open, there exists δ > 0 s.t. (x̂− δ, x̂+ δ) ⊂ U .
Take any x ∈ (x0 − δ, x0 + δ). By construction, we have x− x0 ∈ (−δ, δ), and so

x̂+ (x− x0) ∈ (x̂− δ, x̂+ δ) ⊂ U

Because x̂ ∈ [x0, x0 + 1], we have

x̂+ (x− x0) ∈
[
x0 + (x− x0) , x0 + (x− x0) + 1

]
= [x, x+ 1]

Therefore, we have x̂+ (x− x0) ∈ [x, x+ 1] ∩ U , and so [x, x+ 1] ∩ U ̸= ∅.

Lhc allows smooth changes in the image, regardless of whether the correspondence is closed
valued. If we consider a slightly different correspondence F4 : R ⇒ R defined as

F4 (x) := (x, x+ 1)

for any x ∈ R, a slightly modification of the proof above can show that F4 is also lhc.
For single-valued correspondences, lhc is equivalent to continuity of functions.

Proposition 1.14. Let (X, dX) and (Y, dY ) be metric spaces. Consider a single-valued correspon-
dence F : X ⇒ Y . Define f : X → Y as f (x) := y s.t. y ∈ F (x). Then F is lhc at x0 ∈ X iff f is
continuous at x0.

This proof is straightforward, and is left as an exercise.
The following proposition provides the sequential definition of lhc.

Proposition 1.15. Let (X, dX) and (Y, dY ) be metric spaces. A correspondence F : X ⇒ Y is lhc
at x0 ∈ X, iff for any y0 ∈ F (x0) and sequence (xn) in X convergent to x0, there exists N ∈ N and
yn ∈ F (xn) for any n > N s.t. the sequence (yn)n>N converges to y0.

In the proposition above, we start to construct the sequence (yn) starting from n = N + 1,
because F (xn) may be empty for small n’s.

Proof. ⇒:
Take any y0 ∈ F (x0) and sequence (xn) in X convergent to x0.
WTS: ∃ N ∈ N and yn ∈ F (xn) for any n > N s.t. the sequence (yn)n>N converges to y0.
For each k ∈ N, we have y0 ∈ F (x0)∩B1/k (y0), and so F (x0)∩B1/k (y0) ̸= ∅. By lhc, ∃ δk > 0

s.t. for any x ∈ Bδk (x0), we have F (x) ∩B1/k (y0) ̸= ∅.
Because xn → x, ∃ N ∈ N s.t. xn ∈ Bδ1 (x0) for any n > N .
For each n > N , arbitrarily take

yn ∈
⋂

k∈
{
k′∈N:xn∈Bδk′

(x0)
}
[
F (xn) ∩B1/k (y0)

]

This is possible because F (xn) ∩B1/k (y0) ̸= ∅ whenever xn ∈ Bδk (x0).
Now I want to show that (yn)n>N converges to y0.
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Take any ε > 0. ∃ K s.t. 1/k < ε for any k > K. Because xn → x0, ∃ N̂ > N s.t. xn ∈ BδK (x0)
for any n > N̂ . Therefore for any n > N̂ , we have xn ∈ BδK (x0), which implies yn ∈ B1/K (y0),
which in turn implies yn ∈ Bε (y0).

⇐:
Suppose, by contradiction, that ∃ open set U in (Y, dY ) s.t. F (x0) ∩ U ̸= ∅, but ∀ δ > 0, ∃

x ∈ Bδ (x0) s.t. F (x)∩U = ∅. This implies that for any n ∈ N, ∃ xn ∈ B1/n (x0) s.t. F (xn)∩U = ∅,
i.e. F (xn) ⊂ Y \U .

By construction, we have xn → x0. Arbitrarily take y0 ∈ F (x0) ∩ U , and by assumption there
exists N ∈ N and yn ∈ F (xn) for any n > N s.t. the sequence (yn)n>N converges to y0. Because
yn ∈ F (xn) ⊂ Y \U for any n > N , and Y \U is closed in (Y, dY ) since U is open, we have y0 ∈ Y \U .
This contradicts the construction of y0.

As we have discussed, uhc for closed-valued correspondences means no sudden appearance of
image when deviating from a point, while uhc means no sudden disappearance of image when
deviating from a point. Therefore, we might expect a relation between F being uhc and F c being
lhc. In fact, we have one direction, but not the other.

For a correspondence F : X ⇒ Y , let’s define its complement F c : X ⇒ Y as

F c (x) := Y \F (x)

for any x ∈ X. Again, this is a redundant definition if we realize that F is essentially a subset of
X × Y .

Proposition 1.16. Let (X, dX) and (Y, dY ) be metric spaces, and consider a correspondence F :
X ⇒ Y . If F c is uhc at x0 ∈ X, then F is lhc at x0.

The proof is left as an exercise.
However, F c being lhc does not imply F being uhc, even if we further assume F to be compact-

valued. For example, consider the correspondence F7 : R ⇒ R defined as:

F8 (x) :=

{
{0} , if x < 0
{1} , if x ≥ 0

Clearly F is compact-valued, and F (x) is not uhc at 0. However, F c is lhc at all x0 ∈ R.
Finally, a correspondence is said to be continuous iff it is both uhc and lhc.

Definition 1.17. Let (X, dX) and (Y, dY ) be metric spaces. The correspondence F : X ⇒ Y is
said to be continuous at x0 ∈ X iff F is both uhc and lhc at x0. The correspondence F is said to
be continuous iff F is continuous at x0 for all x0 ∈ X.

2 Kakutani’s Fixed Point Theorem

Definition 2.1. A correspondence F from X to X itself is called a self-correspondence.
For a self-correspondence F : X ⇒ X, a point x∗ ∈ X is called a fixed point of F iff x∗ ∈

F (x∗).

When the self-correspondence F is single-valued, clearly x∗ ∈ X is a fixed point of F iff F (x∗) =
{x∗}, which is consistent with notion of fixed points for functions. Therefore, the definition above
can be considered as a generalization of the notion of fixed points to correspondences.
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Theorem 2.2 (Kakutani’s Fixed Point). Let X be a nonempty, compact, and convex set in Rn. If
the self-correspondence F : X ⇒ X is nonempty-valued, compact-valued, convex-valued, and uhc,
then there exists a fixed point x∗ ∈ X of F .

In the theorem above, compactness is w.r.t. the metric space (Rn, d2), and convexity is w.r.t.
the vector space (Rn,+, ·) over R, where + and · are the usually defined vector addition and scalar
multiplication for real vectors.

If F is single-valued, then nonempty-valuedness, compact-valuedness, and convex-valuedness of
F holds trivially, and uhc reduces to the continuity of functions. So the theorem above reduces to
Brouwer’s fixed point theorem. Therefore, Kakutani’s fixed point theorem should be viewed as a
generalization of Brouwer’s fixed point theorem.

Because the codomain X of F is compact in the theorem, compact-valuedness is equivalent to
closed-valuedness, and so we can replace the compact-valuedness assumption by closed-valuedness.

Again because the codomain X is compact, (compact-valuedness + uhc) is equivalent to cgp.
To see this, the direction ”⇒” is given by Proposition 1.10, and the other direction ”⇐” is given by
Proposition 1.11, since local boundedness holds trivially. Therefore we have the following corollary.

Corollary 2.3. Let X be a nonempty, compact, and convex set in Rn. If the self-correspondence
F : X ⇒ X is nonempty-valued, convex-valued, and has cgp, then there exists a fixed point x∗ ∈ X
of F .

Kakutani’s fixed point theorem plays the central role in the proof of the existence of Walrasian
equilibrium in general equilibrium theory, and also in the proof of the existence of Nash equilibrium
in non-cooperative game theory.

3 Berge’s Theorem of Maximum

Theorem 3.1. [Berge’s Theorem of Maximum] Let (X, dX) and (A, dA) be metric spaces. Let
f : X ×A → R be a continuous function w.r.t. the metric dX×A. Let α0 ∈ A, and suppose that the
correspondence D : A ⇒ X is nonempty-valued at α0, compact-valued at α0, and continuous at α0.

Define the correspondence X∗ : A ⇒ X as

X∗ (α) := argmax
x∈X

{
f (x, α) : x ∈ D (α)

}
for any α ∈ A.

Let Â :=
{
α ∈ A : X∗ (α) ̸= ∅

}
, and define the function f∗ : Â → R as

f∗ (α) = max
x∈X

{
f (x, α) : x ∈ D (α)

}
Then X∗ is nonempty-valued at α0, compact-valued at α0, and uhc at α0, and f∗ is continuous

at α0.

In the theorem above, the maximization problem we are looking at is a parameterized problem

max
x∈X

f (x, α) s.t. x ∈ D (α)

where both the objective function f and the constraint set D depend on the parameter α. The
theorem states that if the objective function f is continuous, and the constraint set D is nonempty-
and compact-valued, and is both uhc and lhc in the parameter α, then the set of maximizers X∗ is
compact and uhc in α, and the maximum value f∗ is also continuous in α.
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Proof. Let’s prove the theorem in three steps:
Step 1: X∗ is nonempty-valued at α0

Because f : X ×A → R is continuous w.r.t. dX×A, clearly the function fα0 : X → R defined as

fα0 (x) = f (x, α0) , for any x ∈ X

is continuous w.r.t. dX (exercise). Because D (α0) is nonempty and compact by assumption,
Weierstrass theorem implies that

X∗ (α0) := argmax
x∈X

{
fα0 (x) : x ∈ D (α0)

}
is nonempty. So we know that X∗ is nonempty-valued at α0.

Step 2: X∗ is compact-valued at α0 and uhc at α0

Let’s show this using Proposition 1.6.
Take any sequence (αn) in A convergent to α0, any sequence (xn) s.t. xn ∈ X∗ (αn) for each

n ∈ N.
WTS: ∃ subsequence

(
xnk

)
convergent to some x0 ∈ X∗ (α0).

Because xn ∈ X∗ (αn) ⊂ D (αn) for each n, and because D is compact valued at α0 and uhc at
α0, by Proposition 1.6, ∃ subsequence

(
xnk

)
convergent to some x0 ∈ D (α0).

Take the x0 found this way, and it is sufficient to show that x0 ∈ X∗ (α0), i.e. f (x0, α0) ≥
f (z, α0) for any z ∈ D (α0).

Take any z ∈ D (α0). WTS: f (x0, α0) ≥ f (z, α0)
Because D is lhc at α0 and αnk

→ α0, by sequential definition of lhc (Proposition 1.15), there
exists K ∈ N and zk ∈ D

(
αnk

)
for each k > K, s.t. zk → z.

Because xnk
→ x0, αnk

→ α0, we have
(
xnk

, αnk

)
→ (x0, α0) in (X ×A, dX×A). Because f is

continuous w.r.t. dX×A, we have f
(
xnk

, αnk

)
→ f (x0, α0).

Because zk → x0, αnk
→ α0, we have

(
zk, αnk

)
→ (x0, α0) in (X ×A, dX×A). Because f is

continuous w.r.t. dX×A, we have f
(
zk, αnk

)
→ f (z, α0).

For each k, we have f
(
xnk

, αnk

)
≥ f

(
zk, αnk

)
because xnk

∈ X∗ (αnk

)
. Therefore we have

f (x0, α0) ≥ f (z, α0).
Step 3: f∗ is continuous at α0

By (1), we have α0 ∈ Â, i.e. α0 is in the domain of the function f∗. Therefore it makes sense to
talk about continuity of f∗ at α0.

Let’s show the continuity of f∗ using the sequential definition of continuous functions.
Take any sequence (αn) in Â convergent to α0. WTS: f∗ (αn) → f∗ (α0).
Suppose f∗ (αn) ↛ f∗ (α0). Then there exist ε̂ > 0 s.t. for any N ∈ N there exists n̂ > N s.t.∣∣f∗ (αn̂)− f∗ (α0)

∣∣ ≥ ε̂. Then we can find a subsequence
(
αnk

)
s.t.

∣∣∣f∗ (αnk

)
− f∗ (α0)

∣∣∣ ≥ ε̂ for

each k.
For each k, because αnk

∈ Â, the set X∗ (αnk

)
is nonempty. Arbitrarily take some xk ∈

X∗ (αnk

)
. Because X∗ is compact-valued at α0 and uhc at α0, by Proposition 1.6, there exists

a subsequence
(
xkl

)
convergent to some point x0 ∈ X∗ (α0). Because αnkl

→ α0, xkl → x0, we

have
(
xkl , αnkl

)
→ (x0, α0), and so f

(
xkl , αnkl

)
→ f (x0, α0). Because xkl ∈ X∗

(
αnkl

)
and

x0 ∈ X∗ (α0), we have f
(
xkl , αnkl

)
= f∗

(
αnkl

)
and f (x0, α0) = f∗ (α0), and therefore

f∗
(
αnkl

)
→ f∗ (α0)

However, we have
∣∣∣f∗ (αnk

)
− f∗ (α0)

∣∣∣ ≥ ε̂ for each k, by construction of the subsequence
(
αnk

)
.

Contradiction.
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By Theorem of Maximum, we can only conclude that the set of maximizers X∗ is uhc in the
parameter α. In fact, X∗ may easily fail to be lhc, even when the objective function f and the
constraint correspondence D are continuous in the parameter α. For example, consider the following
problem:

max
(x1,x2)∈R2

+

αx1 + x2 s.t. p1x1 + p2x2 ≤ m

where the parameters α > 0, p1, p2,m > 0. Clearly, the objective function f : R2
+ × R+ defined as

f (x, α, p1, p2,m) := αx1 + x2

is continuous. The constraint correspondence D : R+ × R2
++ × R++ := S ⇒ R2

+ defined as

D (α, p1, p2,m) :=
{
x ∈ R2

+ : p1x1 + p2x2 ≤ m
}

is nonempty- and compact-valued, and continuous at all (α, p1, p2,m) ∈ S. Therefore the assump-
tions of the Theorem of Maximum are satisfied. However, it is not difficult to see that the set of
maximizers X∗ : R+ ⇒ R2

+ is

X∗ (α, p1, p2,m) :=



{(
0, m

p2

)}
, if p1 > αp2{

x ∈ R2
+ : p1x1 + p2x2 = m

}
, if p1 = αp2{(

m
p1
, 0
)}

, if 0 < p1 < αp2

which is clearly uhc but not lhc at the point (α, p1, p2,m) where p1 = αp2.
If in addition to the assumptions in the Theorem 3.1, D is convex-valued and f is strictly

concave in x, then X∗ is single-valued (see Proposition 2.3 in Lecture 5). That is, there is a unique
maximizer for any α that satisfies the relevant conditions. In this case, we can think of X∗ as a
continuous function x∗, such that X∗(α) = {x∗(α)}. Moreover, we have the following result if the
parameter space A and the space of the choice variable X are both Eulidean spaces:

Lemma 3.2. * Let A be a set in (Rl, d2), X be a set in (Rm, d2). Let f : X×A → R be a continuous
function w.r.t. the metric dX×A and f(x, α0) is strictly quasi-concave in x for some α0 ∈ A. Let
D : A ⇒ X be non-empty at α0, compact-valued at α0, convex-valued at α0, and continuous at α0.
Then for any ε > 0, there exists δα0 > 0 (which might depend on α0) s.t. for x ∈ D(α0),

|f∗(α0)− f(x, α0)| < δα0

implies
d2(x

∗(α0), x) < ε.

If the conditions on D and f hold for ∀α ∈ A, and A is compact, then for any ε > 0, there exists
δ > 0 (independent of α) s.t. for any α ∈ A, x ∈ D(α),

|f∗(α)− f(x, α)| < δ ⇒ d2(x
∗(α), x) < ε.

This lemma says when we consider a maximization problem in a real space, if in addition to the
conditions on the objective function f and the constraint-set correspondence D in Theorem 3.1, we
also have f is strictly quasi-concave in x, and D is convex-valued, then for given α ∈ A, as long as
the value of the objective function evaluated at x ∈ D(α) is close enough to that evaluated at the
maximizer x∗(α), then the point x can get arbitrarily close to the maximizer.

Now we have the following theorem about the maximizers of a convergent sequence of parametrized
functions on a parameterized constraint set.
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Theorem 3.3. * Assume A,X,D satisfy the relevant conditions for ∀α ∈ A as in the Lemma
above. Let {fn} be a sequence of continuous functions fn : X × A → R. Assume that for each n
and α ∈ A, fn(·, α) is strictly concave. Assume f : X × A → R is also strictly concave in x and
continuous. Let fn → f uniformly5. Let

f∗
n(α) = max

x∈D(α)
fn(x, α), n = 1, 2, ...

f∗(α) = max
x∈D(α)

f(x, α)

Then f∗
n → f∗ pointwise. If A is compact, then f∗

n → f∗ uniformly.

This theorem states that when we consider maximization problems in a real space, under certain
conditions, the value function of objective function fn under certain constraints (common to n) gets
close to the value function of f under the same constraint, if (fn) as a sequence of functions gets
close to f .

5fn → f uniformly iff ∀ε > 0, ∃N ∈ N s.t. supα∈A,x∈D(α) |fn(x, α)− f(x, α)| < ε. That is, uniform convergence of
functions is convergence under the uniform metric defined for the space of functions: d(f, g) := supx∈D |f(x)− g(x)|.
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