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1 General Setup

1.1 Definition

Definition 1.1. Let f be a function from X to the poset (Y,≤), and let D ⊂ X. A maximization
problem takes the form

max
x∈X

f (x) s.t. x ∈ D

where f is called the objective function, x is called the choice variable, and D is called the
constraint set or feasible set. A point x ∈ X is said to be feasible iff x ∈ D.

∗The present lecture notes were largely based on math camp materials from César Barilla, Palaash Bhargava, Paul
Koh, and Xuan Li. All errors in this document are mine. If you find a typo or an error, please send me an email at
ac4790@columbia.edu.
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The set of maximizers, or maximum points, of this problem is defined as

argmax
x∈X

{
f (x) : x ∈ D

}
:=
{
x∗ ∈ D : f

(
x∗
)
≥ f (x) ∀ x ∈ D

}
If the set of maximizers is nonempty, then this problem is said to have a solution. In this case, we
define the maximum, or the maximum value, of this problem as f (x∗), where x∗ is an arbitrary
maximizer, and denote it as maxx∈X

{
f (x) : x ∈ D

}
.

The maximum does not need to exist in general, i.e the set of maximizers can be empty. Consider
for example the function :

f : (0, 1) → (0, 1)

x 7→ x

This function does not have a maximum because for every point x ∈ (0, 1) I can find a point
x′ ∈ (0, 1) such that f(x′) > f(x) (by moving arbitrarily close to 1). In other words, the set
f((0, 1)) does not have a maximum.

Notice that although the set of maximizers can be non-singleton when nonempty, the maximum
does not depend on the selection of x∗ from the set of maximizers. This follows directly from the
anti-symmetry property of the partial order on Y . Therefore, if it exists, the maximum is a well
defined (unique) element of Y :

max
x∈D

f(x) ∈ Y.

The set of maximizers, by contrast, is a subset of D in general :

argmax
x∈D

f(x) ⊂ D

If (Y,≤) has the least upper bound property, then we know that the following supremum always
exist :

sup
x∈D

f(x).

This will notably be the case when Y = R, which will be our main case of of interest. Then, the
question of whether a maximum exists can be interpreted as whether this supremum is attained by
a point in D. There exists a smallest upper bound to f(x), but is it feasible to attain this value
from a point in D ? The previous example already hints at the fact that both the properties of the
set D and the function f will jointly determine the answer to this question – this is because we are
essentially studying the set f(D).

We can define minimization problem analogously. In fact, we can always transform a mini-
mization problem into a maximization problem by reversing the order ≤ on the codomain, and
therefore it is without loss to only study maximization problems. In most applications, of course,
the codomain of the objective function f is the totally ordered set (R,≤). In this case, we can
transform a minimization problem of function f to a maximization problem of −f . Throughout
these notes we will focus on maximization, but all our results are directly applicable to minimization
using the following transformation :

max
x∈D

f(x) = −min
x∈X

(−f)(x)

argmax
x∈D

f(x) = argmin
x∈X

(−f)(x)
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Observe that so far, we have not specified what the set X (the domain of the function) is allowed
to be. In general, this could be anything, but different set structures will lead to different techniques.
For instance, X could be a finite set, a finite or infinite dimensional vector space or a subset of
one, a subset of a metric space, etc. The structure of the space will naturally determine the tools
that we can use to study the problem. We introduce some usual terminology to categorize different
common types of optimization problems :

• ”Unconstrained optimization” refers to an optimization problem where D is an open set of a
metric space.

• ”Optimization under equality constraint” refers to an optimization problem where D is of the
form D = {x ∈ X, g(x) = 0}, where g : X → Z, and both X,Z are metric spaces. If Z is a
vector space of dimension p (typically Z = Rp), we say that p is the ”number of constraints”.

• ”Optimization under inequality constraint” refers to an optimization problem where D is of
the form D = {x ∈ X,∀i ∈ I, gi(x) ≤ 0}, where gi : X → R for all i ∈ I. If |I| is finite, we
refer to it again as the number of constraints.

• We will sometimes talk about mixed constraints when combining equality and inequality
constraints.

• We say that x0 ∈ D is a global maximum if it is a solution to the optimization problem, i.e
f(x0) ≥ f(x) for all x ∈ D.

• We say that x0 ∈ D is a local maximum if there exists a neigborhood of x0 in D (notice that
this requires X to be a metric space to allow us to talk about distance) such that f(x0) ≥ f(x)
for all x in this neighborhood.

There are generally three main kind of questions that we can investigate when looking at an
optimization problem :

1. Does there exist (at least) a solution ? In other words, can we find a maximizer ? Is this
maximizer unique ? This is usually the first question in the logical order : we cannot say
much if there is no maximum and our problem is not well defined. Existence questions are
usually approached using Analysis tools.

2. What are the properties of the solution ? How to characterize the maximizers and the maxi-
mum ? What can we say about them ? This is where we usually start to get more economics-
relevant results that allows us to characterize some behavior and its properties of interest. To
answer these questions, we often use the tools of differential calculus.

3. Can we explicitly identify the solution or an approximation of it ? In simple cases, this will
actually be answered with the same tools as the previous question. In general, we might
need to construct algorithms or numerical methods to approximate complex solutions that we
cannot find explicitly.

In those lecture notes, we will talk mostly about the first two questions, although in many cases
we will look at problems simple enough that the second and third questions are actually answered
together.
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1.2 General Properties

The following proposition relates a maximization problem on a bigger set to a maximization problem
over a subset (this can allow us, in particular, to relate local maxima to global maxima).

Proposition 1.2. (Variant 1) Let f be a function from X to the poset (Y,≤), and let E ⊂ D ⊂ X.
Suppose that ∀ x ∈ D, ∃ x̂ ∈ E s.t. f (x̂) ≥ f (x). Consider the following two problems:

max
x∈X

f (x) s.t. x ∈ D

and
max
x∈X

f (x) s.t. x ∈ E

The maximizers in the two problems have the following relation

argmax
x∈X

{
f (x) : x ∈ E

}
=

(
argmax

x∈X

{
f (x) : x ∈ D

})
∩ E

and if one of the two problems has a solution, then the other also has a solution. Furthermore,
when the two problems have a solution, they have the same maximum.

(Variant 2)
Let f be a function from X to the totally ordered set (Y,≤). Let D ⊂ X, and x0 be some

arbitrary element of D, and define E :=
{
x ∈ D : f (x) ≥ f (x0)

}
. Then we have

argmax
x∈X

{
f (x) : x ∈ E

}
= argmax

x∈X

{
f (x) : x ∈ D

}
and the two problems have the same maximum if they have a solution.

Intuitively, Variant 1 of Prop.1.2 says that when we choose x ∈ D to maximize f (x), we can
instead focus only on E ⊂ D without loss of optimality, if for any alternative x ∈ D we can find an
alternative x̂ ∈ E that is weakly better than x1.Variant 2 says that if the alternative x0 is feasible,
then we can ignore all alternatives strictly worse than x0 without loss of optimality2.

Proposition 1.3. Let f be a function from X to the poset (Y,≤), and let D ⊂ X. Let {Dα}α∈A
be a family of subsets of D s.t. ⋃

α∈A
Dα = D

For each α ∈ A, let
X∗

α := argmax
x∈X

{
f (x) : x ∈ Dα

}
Suppose that X∗

α ̸= ∅ for any α ∈ A. Then

argmax
x∈X

{
f (x) : x ∈ D

}
= argmax

x∈X

f (x) : x ∈
⋃
α∈A

X∗
α


1The proposition above has an important application in mechanism design. When the principal chooses from

the space of all mechanisms to maximize some objective function, the Revelation Principle states that any allocation
that can be implemented by some mechanism can also be implemented by a direct truthful mechanism. Therefore,
the proposition above implies that it is without loss of optimality for the principal to focus only on the space of
direct truthful mechanism, which is a much smaller space compared to the space of all mechanisms. In this way, the
maximization problem of the principal is greatly simplified.

2Notice that Variant 2 requires that the codomain Y is a totally ordered set, and the result does not hold if the
order ≤ defined on the codomain is not complete.
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Intuitively, this proposition says that when we optimize f over the set D, we can partition D
into pieces and optimize in each piece. Then we can collect the maximizers over each piece and
compare them.

1.3 Examples

1. Choice problem. Let X a set of possible alternatives for a decision-maker – i.e the decision
maker has to choose one element in X. Assume that the preferences of the decision maker
are represented by an objective function f : X → R such that f(x′) ≥ f(x) if and only if x′

is a better alternative than x, i.e x′ is preferred to x. In the case of a consumption problem,
this would often be referred to as a utility function, but in general this could be anything that
captures the preferences of the decision-maker3. Then the decision problem can be viewed as
a maximization problem : the best alternative x∗ would be one that dominate all others i.e
f(x∗) ≥ f(x) for all x. In other words, we can view model the decision problem as :

max
x∈X

f(x)

Where the chosen alternative would be anything in argmaxx∈D f(x).

We can make several modelling remarks here. First, this is only one model for the decision
problem. We can approach it from a normative perspective : if we assume that f is the
right objective function (i.e we take for granted that it represents the true preferences of
the decision maker), then solving the problem will tell us what the decision maker should
choose under those preferences. The validity of the answer is obviously contingent on having
the right objective function. We might also try to have a descriptive approach and try to
predict what a decision-maker would choose. Then the objective function might not be a
representation of the true preferences if the decision process is imperfect (e.g. noisy), but it
would have to be a representation of the criterion that the decision maker uses. When trying
to have a descriptive approach, the model we choose to predict behavior should ultimately be
comparible (and compared) to actual relevant decisions to assess its accuracy and predictive
power. It is also very important to found the structure and assumptions of our approach on
general principle. A model is never universal, it is only one self-consistent approximation that
may or may not be applicable to represent more complex phenomena.

2. Best response. Consider a game with two players that simultaneously choose an action.
Player 1 chooses an action from a set A and player two chooses from a set B. The resulting
payoff for player 1 when they choose a ∈ A and the other chooses b ∈ B is given by u1(a, b);
this is the payoff function or utility function, which is a function from A×B to R. We might
wonder, if player 1 knew what player 2 is going to play, what would be their best choice (i.e
what would they like to play) ? This defines the best response problem. Fix some b ∈ B,
we want to find a∗ ∈ A such that u1(a

∗, b) ≥ u1(a, b) for all a ∈ A. This is a maximization
problem in a, which has b has a fixed parameter, therefore it defines a mapping from a given
b to the set of maximizers for that b :

b 7→ argmax
a∈A

u1(a, b)

3It is not obvious (and it is not true in general) that arbitrary preferences of the decision maker can be represented
by a function. It is an important topic in decision theory to find explicit axiomatic characterizations of fundamental
preferences (represented as abstract relations on the set of alternatives) such that we can indeed represent preferences
as a utility function. Intuitively, you can see that representing preferences as a utility function requires everything to
be comparible (completeness) since all real numbers are comparible and preferences to be transitive (since we have
transitivity on R).
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This is known as Player 1’s best response correspondence, and this plays a crucial role in
defining the concept of Nash Equilibrium of a game.

3. Least Squares. Consider a problem where we want to assess the effect of some variable
x (e.g. years of education) on some variable y (e.g. wage). Assume that for some external
reason, we know that the relationship between those two variables can be well approximated
by a linear function y = βx for some β ∈ R, and we are interested in estimating the value
of that parameter β – in the education/wage example, this will tell us approximately how
much more an individual can expect to earn for an additional year of education. Furthermore
assume that we have observed data (x1, y1), (x2, y2), ..., (xn, yn) giving us actual realized pairs
(x, y). One way to approach our estimation problem is to try choose the β that minimizes the
prediction error of the linear specification. If we fix a β, then for observation i the predicted
value will be ŷi = βxi, hence the estimation error will be yi − ŷi = yi − βxi. For technical
reasons, it is a good idea to focus on the square of the error (measuring the magnitude of
approximation) |yi − βxi|. Therefore the total approximation error over all observations for a
given β will be given by :

n∑
i=1

|yi − βxi|2

One estimation procedure that can be shown to be effective if we have good reasons to use a
linear approximation is to try to minimize the sum of squared errors in β. This leads to the
following minimization problem :

min
β∈R

n∑
i=1

|yi − βxi|2

This is only one possible statistical model and one possible approach at solving it, but it is
quite a general idea that in statistics and econometrics, we can often express our problem as
minimizing some loss function that captures how well our estimation fits the observed data.

4. Pareto-Optimal Allocation. Assume there are n agents among which we need to split
some ressource whose total amount is normalized to 1 (think about cutting a cake). Assume
that agent i gets utility ui(xi) from a share xi ∈ [0, 1] of the cake. We can ask : what is the
split of the cake that maximizes total utility ? In which case this will lead to the maximization
problem :

max
(x1,...,xn)∈[0,1]n

n∑
i=1

ui(xi)

s.t.
n∑

i=1

xi ≤ 1

The inequality constraint
∑n

i=1 xi ≤ 1 is a ressource constraint : we cannot distribute more
than the total size of the cake. We can generalize this problem to different objectives over
resulting utilities. For example, we might add relative weights (λi) to the utilities of each
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agent, giving a new maximization problem :

max
(x1,...,xn)∈[0,1]n

n∑
i=1

λiui(xi)

s.t.
n∑

i=1

xi ≤ 1

We might care only about, say, the utility of the worse-off individual under a given split of
the cake. Given (x1, ..., xn) a repartition, the worse-off individual has utility min1≤i≤n ui(xi).
In that case, we would try to maximize :

max
(x1,...,xn)∈[0,1]n

min
1≤i≤n

ui(xi)

s.t.
n∑

i=1

xi ≤ 1

There are many more examples of optimal allocation problems under various constraints, and
this has many applications in e.g. public goods or common resources problem.

2 Existence of Maximizers

The first issue about maximization problems is the existence of maximizers. We have already
seen results that provide existence results in our Real Analysis lecture. Indeed, remember that
Weierstrass theorem in Lecture 1 states that a continuous real-valued function on a compact set
must achieve its maximum/minimum. Let’s rewrite it as the proposition below.

Proposition 2.1. Let f : X → R, D ⊂ X nonempty, and consider the maximization problem

max
x∈X

f (x) s.t. x ∈ D

If there exists a metric d defined on the set D s.t. (D, d) is a compact metric space, and the function
f |D, i.e. f restricted in D, is continuous w.r.t. the metric d, then

argmax
x∈X

{
f (x) : x ∈ D

}
̸= ∅

i.e. the maximization problem has a solution.

In the proposition above, we use the usually defined order ≤ and the Euclidean distance d2 for
the codomain R. Function f restricted inD is a new function f |D : D → R defined as f |D (x) = f (x)
for any x ∈ D4.

Observe that compactness and continuity together play an essential role : because the image
of a compact set by a continuous function is a compact set, and because compact subsets of R
have a maximum, the function attains its maximum. Those conditions are sufficient, but in general
not necessary. It is however, a very frequent theme in optimization method to show existence that
compactness and continuity play a part together. Although there is no absolutely universal method,
those notions and techniques can be applied and adapted to many particular cases.

4We distinguish between f and f |D because continuity is not defined without the metric d, while a metric is not
necassary on X\D.
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Weierstrass theorem provides a sufficient condition for a maximization problem to have a solu-
tion. However, sometimes we cannot directly apply Weierstrass theorem to argue that a maximiza-
tion problem has a solution. For example, consider the following maximization problem:

max
(x1,x2)∈R2

++

lnx1 + lnx2 s.t. x1 + x2 = 3

Notice that the constraint set D in this problem is

D :=
{
(x1, x2) ∈ R2

++ : x1 + x2 = 3
}

which is not compact under the Euclidean distance d2, since it is not closed in
(
R2, d2

)
. Therefore, we

cannot directly apply Weierstrass theorem, although the objective function lnx1+lnx2 is continuous.
However, we can transform this problem to another problem to which Weierstrass theorem

applies, using Proposition 1.2. Because (1, 2) ∈ D, and f (1, 2) = ln 2, we can define

E :=
{
(x1, x2) ∈ R2

++ : x1 + x2 = 3, lnx1 + lnx2 ≥ ln 2
}

By Proposition 1.2, the problem

max
(x1,x2)∈R2

++

lnx1 + lnx2 s.t. (x1, x2) ∈ E

has the same set of maximizers as the original problem. It can be shown that E is compact under
d2, and so we can invoke Weierstrass theorem to argue that the maximization problem over E has a
solution, and therefore, the original problem over D also has a solution. It’s important to remember
that how the problem is written matters, and in general the choice of the underlying space and
the distance will influence which techniques we can use. This is true in finite dimension and even
more so in infinite dimension, and highlights the importance of having our general toolbox of real
analysis at hand to analyze those problems.

The next issue is about the uniqueness of the maximizer. One of the main techniques to get
uniqueness is to use concavity (for a minimum, convexity for a maximum) of functions to relate
local and global properties. Concavity captures the idea that ”mixtures improve the objective
function” (the image of the convex combination is higher than the convex combination of the
images), therefore strict concavity will imply uniqueness, because given two maxima we can take
a convex combination of them and do strictly better. In general, we get a more general result by
only requiring quasi-concavity. Formally, we have the following result :

Proposition 2.2. Let X be a set in real vector space (V,+, ·), and let f : X → R. If D ⊂ X
is a convex set in V and f |D is a strictly quasi-concave function, then argmaxx∈X

{
f (x) : x ∈ D

}
contains at most one point, i.e. the maximization problem has a unique maximizer if it exists.

Proof. Suppose x∗, x∗∗ ∈ argmaxx∈X
{
f (x) : x ∈ D

}
and x∗ ̸= x∗∗. By strict quasi-concavity of f ,

we have

f
(
x∗
)
= f

(
x∗∗
)
< f

(
1

2
x∗ +

1

2
x∗∗
)

Because D is a convex set, we know that 1
2x

∗+ 1
2x

∗∗ ∈ D, and this contradicts the assumption that
x∗, x∗∗ ∈ argmaxx∈X

{
f (x) : x ∈ D

}
.

In the proposition above, if we replace strict quasi-concavity by quasi-concavity, then we don’t
have this uniqueness result. Instead we have the following result.
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Proposition 2.3. Let X be a set in real vector space (V,+, ·), and let f : X → R. If D ⊂ X is a
convex set in V and f |D is a quasi-concave function, then argmaxx∈X

{
f (x) : x ∈ D

}
is a convex

set in V .

Proof. Suppose x∗, x∗∗ ∈ argmaxx∈X
{
f (x) : x ∈ D

}
. Then ∀λ ∈ [0, 1], f(λx∗ + (1 − λ)x∗∗) ≥

min
{
f(x∗), f(x∗∗)

}
because f is quasi-concave. As the value of maximum f(x∗) is unique if exists,

we have f(λx∗+(1−λ)x∗∗) = f(x∗) and therefore λx∗+(1−λ)x∗∗ ∈ argmaxx∈X
{
f (x) : x ∈ D

}
It’s important to remember that there is no universal method to prove either existence or

uniqueness of minimizers. The notions of compactness, continuity, concavity provide useful tools
because they capture fundamental properties that will imply those results. The spirit of those results
can be adapted and extended to ad hoc cases, or conversely non-existence or non-uniqueness can be
proven by finding e.g. appropriate violations of compactness, continuity or concavity respectively.
Those results are general guides that cover a lot of cases, but it’s important to understand their
logic to be able to replicate and adapt those results to problems of interest.

3 Unconstrained Optimization on Rn

From now on, we focus on maximization problems for real-valued functions defined on a subset of
Rn. In this paragraph, we consider unconstrained optimization problem where the set over which
the optimization problem is defined is an open set in Rn. What makes such problems special (and
easier to deal with) is that in an open set, we can always compare a point to all the points in a
ball around it. Since all points are interior points, the conditions for being a local maximizer will
have the same form for all points : we only need to check that the point achieves the highest value
compared to a ball around it (which is symmetric). If we had non-interior points (boundary points)
in the set, this would introduce an asymmetry. We will deal with that in the next paragraphs in
the form of (in)equality constraints.

First, we consider single variable functions for simplicity, and then generalize it to multivariable
functions. The next theorem provides the necessary first order condition and the necessary second
order condition for an interior maximizer. The result does not require that D is open but restricts
the attention to interior maximizers which is equivalent (we ignore maximizers on the boundary).

Theorem 3.1. Let X be a set in R, and D ⊂ X. Let f : X → R, and consider the problem

max
x∈X

f (x) s.t. x ∈ D

and let x∗ ∈ int (D) be a maximizer of the problem.
(1) If f is differentiable at x∗, then f ′ (x∗) = 0.
(2) If f is differentiable in an open ball around x∗, and is twice differentiable at x∗, then f ′′ (x∗) ≤

0.

In the theorem above, x∗ is required to be an interior point of the constraint set D w.r.t. the
whole real line (R, d2), instead of (X, d2). Assuming x∗ to be an interior point of D implies that x∗

is also an interior point of the domain X, and so we are able to talk about the derivative of f at
x∗. In (2), we require f ′ (x) to exist in some open ball around x∗, and so we are able to talk about
f ′′ (x∗). This is why openness plays such a crucial role : we can consider derivatives at every point
in the interior, which gives us information about local variations of the function, and if a set is open
any maximizer has to be an interior point by definition of an open set.

Observe that necessary conditions equivalently characterize local maximizers. Since any global
maximum has to be a local maximum, we can consider the set of local maximizers as the set
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of candidate points to be the maximum. Those conditions, however, are only necessary and not
sufficient : being a local maximizer (a candidate global maximizer) does not imply being a global
maximizer in general.

Now let’s generalize this result to multivariate functions.

Theorem 3.2. Let X be a set in Rn, and D ⊂ X. Let f : X → R, and consider the problem

max
x∈X

f (x) s.t. x ∈ D

and let x∗ ∈ int (D) be a maximizer of the problem.
(1) If f is differentiable at x∗, then ∇f (x∗) = 0.
(2) If f is differentiable in an open ball around x∗, and is twice differentiable at x∗, then Hf (x

∗)
is negative semi-definite.

In the theorem above, again x∗ is required to be an interior point of the constraint set D w.r.t.
the whole Euclidean space (Rn, d2), instead of (X, d2). Assuming x∗ to be an interior point of D
implies that x∗ is also an interior point of the domain X, and so we can talk about total/partial
derivatives of f at x∗.

To maximize f , in practice we usually take partials of f and set them equal to 0, and then solve
for the maximizers. Setting all partials equal to 0 is called the (necessary) first order condition
(FOC) of the maximization problem. The theorem above implies that FOC is necessary for interior
maximizers at which all partials exist.

Note that those results only hold if f is differentiable. If f is not differentiable, the previous
theorem is simply not applicable and does not give us any information. In particular, this does
not say that a non-differentiable function has or does not have a maximum, or where it might or
might not be – it does not say anything at all.

Another way to interpret the theorem above is to look at Taylor approximations. At the first
order, we have :

f(x+ h) = f(x) +∇f(x) · h+ o(||h||)

when ||h|| → 0. Hence, if f(x+h) ≥ f(x) for all h (which is a consequence of x being a maximizer),
this must mean that ∇f(x) · h ≤ 0 for all h small enough. In particular, taking h = t∇f(x) for
t > 0 small enough we have :

∇f(x) · (t∇f(x)) = t||∇f(x)||2 ≤ 0

Which is only possible if ∇f(x) = 0.
We can similarly interpret the second-order condition : if x is a candidate maximizer, i.e∇f(x) =

0, then we have as ||h|| → 0 :

f(x+ h) = f(x) +∇f(x) · h+
1

2
hTHf (x)h+ o(||h||2) = f(x) +

1

2
hTHf (x)h+ o(||h||2)

hence when h small :

f(x+ h)− f(x) ≈ 1

2
hTHf (x)h

so f(x+h)−f(x) is of the sign of hTHf (x)h : if Hf (x) is negative semi-definite (f is locally concave
at x), f(x+ h)− f(x) ≤ 0 for all h small enough, i.e f(x′) ≤ f(x) for x′ in some small ball around
x, in other words x is a local maximum.
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Those first and second order approximations highlight that the first order condition corresponds
to being a critical point which is a local extremum, but the second order term determines whether
it is a local minimum or maximum.

There are two things to be careful about when using FOC. First, FOC is not a sufficient condition
for an x∗ to be a maximizer, i.e. an x∗ at which all partials are 0 may or may not be a maximizer.
Second, FOC is only necessary for interior maximizers at which all partials exist; if a maximizer x∗

is on the boundary of D then FOC may or may not hold at x∗; if some partials do not exist at a
maximizer x∗, then it doesn’t even make sense to talk about FOC at x∗.

In practice, we solve for all solutions to FOC, and consider them as ”type 1” candidates for
maximizers. If D is open, this is all we have to consider. If D is not open, we also collect all points
on the boundary of D and all points at which some partials do not exist, and consider them as ”type
2” candidates. Then we combine the two types of candidates and examine them carefully. It is
possible that the problem does not have a solution at all, in which case no candidate is a maximizer.
However, if we know that the problem has a maximizer, possibly by Weierstrass theorem, then we
know that it must be among the candidates we have found (Proposition 1.3). Then the maximizers
are exactly those candidates that give us the highest value among all candidates.

Negative semi-definite Hf (x
∗) is sometimes called the necessary second order condition

(necessary SOC) of the maximization problem. The theorem above states that necessary SOC is
necessary for interior maximizers at which f is twice differentiable, and so it may help us to rule
out some solutions to FOC but are not maximizers of the problem.

Negative definite Hf (x
∗) is sometimes called the locally sufficient second order condition

(locally sufficient SOC) of the maximization problem, because when f is C2 in some open ball
around x∗, a negative definite Hf (x

∗) is sufficient for x∗ to be a strict local maximizer, in the sense
that ∃ δ > 0 s.t. f (x∗) > f (x) for any x ∈ Bδ (x

∗) \ {x∗}. See FMEA Theorem 3.2.1, 2.3.2,
and 1.8.1 for a proof. Clearly, a negative definite Hf (x

∗) is not sufficient for x∗ being a (global)
maximizer, since Hf (x

∗) only gives us local properties of the function f .
Now let’s state several sufficient conditions for x∗ being a (global) maximizer.

Theorem 3.3. Let X be a convex set in Rn, and D ⊂ X. Let f : X → R be a concave function,
and consider the problem

max
x∈X

f (x) s.t. x ∈ D

If f is differentiable at x∗ ∈ int (X) ∩D, and ∇f (x∗) = 0, then x∗ is a maximizer of the problem.

In the theorem above, the objective function f is assumed to be concave, which is a global
property.

Proof. WTS: f (x∗) ≥ f (x) for any x ∈ D.
Let’s show an even stronger statement: f (x∗) ≥ f (x) for any x ∈ X.
Suppose ∃ x̂ ∈ X s.t. f (x̂) > f (x∗). Clearly, we have x̂ ̸= x∗. By concavity of f , we know that

f
(
λx̂+ (1− λ)x∗

)
≥ λf (x̂) + (1− λ) f

(
x∗
)

for any λ ∈ [0, 1]. Let z := x̂− x∗, and for any λ ∈ (0, 1], we have

f (x∗ + λz)− f (x∗)

λ
=

f
(
λx̂+ (1− λ)x∗

)
− f (x∗)

λ

≥ λf (x̂) + (1− λ) f (x∗)− f (x∗)

λ
= f (x̂)− f

(
x∗
)
> 0

11



Because f is differentiable at x∗ and ∇f (x∗) = 0, we have

lim
λ→0

f (x∗ + λz)− f (x∗)

λ
=

d

dλ
f
(
x∗ + λz

)∣∣∣∣
λ=0

= ∇f
(
x∗
)
· z = 0

which contradicts
f (x∗ + λz)− f (x∗)

λ
≥ f (x̂)− f

(
x∗
)
> 0

for all λ ∈ (0, 1].

If we replace the concavity assumption in the theorem above by quasi-concavity, the sufficiency
result does not hold. For example, consider quasi-concave function f : R → R defined as f(x) = x3.
Clearly 0 ∈ int(R) and f ′(0) = 0, but 0 is not a maximizer on D = R.

However, if we further assume that the function is C2 in some open ball around x∗, and that
Hf (x

∗) is negative definite, and we can restore the sufficiency.

Theorem 3.4. Let X be a convex set in Rn, and D ⊂ X. Let f : X → R be a quasi-concave
function, and consider the problem

max
x∈X

f (x) s.t. x ∈ D

Suppose that
(1) f is differentiable at x∗ ∈ int (X) ∩D, ∇f (x∗) = 0, and
(2) f is C2 in some open ball around x∗, and Hf (x

∗) is negative definite.
Then x∗ is a maximizer of the problem.

4 Optimization under Equality Constraints in Rn

In the previous section, we saw how to deal with interior points : this provided us with a method
to deal with open sets and some non-open sets by considering ”individually” all boundary and
non-differentiability points as candidates. In general, this second might not be practical of feasible
if there is, in a sense, ”a lot” of boundary points.

We now consider the particular case of equality constraints, where all admissible points
are boundary points so we cannot use the interior characterization directly. However, due to the
particular structure of equality constraints, we can use the ideas of the unconstrained approach to
rewrite the problem in a more convenient way. This will lead us to introducing the Lagrangian
Formalism, that we will then extend to deal with both equality and inequality constraints (Kuhn-
Tucker Theorem, in the next paragraph).

We consider the following problem. Let f : Rn → R and g : Rn → Rk, with g(x) =
(g1(x), ..., gk(x)) and c = (c1, ..., ck) ∈ Rk. The set {x ∈ Rn, g(x) = c} is called a level set of
g, and is pinned down by the choice of the constant c. We consider the problem of optimizing f on
a level set of g :

max
x∈{x,g(x)=c}

f(x)

which we rewrite equivalently in the constrained form :

max
x∈Rn

f(x)

s.t. g(x) = c

12



Where g(x) = c explicitly rewrites as gi(x) = ci for all i :
g1(x) = c1
...

gk(x) = ck

Existence questions are quite similar in spirit to the general case. For example, if we can prove
that the level set {x, g(x) = c} ⊂ Rn is compact in Rn and f is continuous, we will get existence
immediately.

Observe that if we can rewrite the level set as a parametrized region, where the parameter
belongs to an open set, we can rewrite the whole problem as an unconstrained problem. Typically,
if there exists x : R → Rn such that :

{x, g(x) = x} = {x(t), t ∈ R}

Then we can rewrite :

max
x,g(x)=c

f(x) = max
t∈R

f(x(t))

which is an unconstrained optimization problem. This can sometimes be done directly (we some-
times refer to this as ”substitution”) and allows to use the tools of the previous paragraph directly.

Example 4.1. If g : R2 → R, with g(x, y) = x+ y, then :

{(x, y), g(x, y) = 0} = {(t,−t), t ∈ R}

Sometimes, finding a parametrization is neither easy nor convenient, but thankfully we can
develop tools to deal with equality constraints directly when the functions f and g are differentiable.
This is the object of the next theorem, stated for one constraint.

Theorem 4.2. Let f, g : D ⊂ Rn → R and x∗ ∈ int(D). If x∗ is a local extremum of f under
the constraint g = c, if f is differentiable at x∗, g is differentiable in a neigborhood of x∗ and if
∇g(x∗) ̸= 0, then there exists λ ∈ R such that :

∇f(x∗) = λ∇g(x∗)

λ is called the Lagrange multiplier associated to the constraint.

i.e at an extremum, the gradient of the objective function must be colinear to the gradient of
the constraint : this is the constrained equivalent of the first order condition in an unconstrained
problem. This result can be given a geometric interpretation and follows from linear algebra con-
siderations which we will make more precise when talking about several constraints.

We now introduce Lagrangian notations. Given the problem of maximizing f under the con-
straint g = c, define the Lagrangian of the problem as the function L : Rn × R → R such that
:

L(x, λ) = f(x)− λ(g(x)− c)

13



The previous theorem rewrites as follows : if x∗ is an extremum of f under the constraint g = c,
then there exists λ such that (x∗, λ) is a critical point of L, i.e :

∇L(x∗, λ) = 0 ⇔

{
∂L
∂x (x

∗, λ) = 0
∂L
∂λ (x

∗, λ) = 0

⇔

{
∇f(x∗)− λ∇g(x∗) = 0

g(x∗)− c = 0

The theorem (and the Lagrangian notation) extend to more than one constraint.

Theorem 4.3. Let f, g1, ..., gk : D ⊂ Rn → R and c = (c1, ..., ck) ∈ Rk. If x∗ ∈ int(D) is a local
extremum of f under the constraints gi = ci for all i and if

(i) f is differentiable at x∗

(ii) g is C1 in a neighborhood of x∗

(iii) the family (∇g1(x
∗), ...,∇gk(x

∗)) is independent

then there exists (λ1, ..., λk) ∈ Rk such that :

∇f(x∗) =
k∑

i=1

λi∇gi(x
∗)

The Lagrangian with several constraints is defined as :

L(x, λ) = f(x)−
k∑

i=1

λi(gi(x)− ci) = f(x)− λ · (g(x)− c)

If x∗ is an extremum of f under the constraint g = c, then there exists λ ∈ Rk such that (x∗, λ) is
a critical point of L, i.e :

∇L(x∗, λ) = 0 ⇔

{
∂L
∂x (x

∗, λ) = 0
∂L
∂λ (x

∗, λ) = 0

⇔

{
∇f(x∗)− λ · ∇g(x∗) = 0

gi(x
∗)− ci = 0 ∀i

This theorem has a fundamental geometric interpretation that relies on the notion of tangent
hyperplanes. Essentially, we can see with one constraint that the gradient of f at an optimum
has to be orthogonal to the line tangent to the space {g(x) = c} at that point. Essentially this
captures the idea that ”otherwise, we could move a little bit while staying in the constraint space
and improve f”. This tangency condition captures the idea that locally, we cannot improve on the
value of f without exiting the space. A classical result on the tangent line is that the gradient of
g at x is orthogonal to the tangent line to the space {g = c} at x. If both ∇f(x∗) and ∇g(x∗) are
orthogonal to the same line, they must be colinear, giving the result.

In general, the proof of the theorem is a consequence of Farkas lemma which is an important
result in linear algebra :

Lemma 4.4 (Farkas Lemma). Let V a vector space equipped with an inner product ⟨·, ·⟩. Let a ∈ V
and (a1, ..., ak) ∈ V k. The following statements are equivalent :
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(i) For all x ∈ V , if ⟨ai, x⟩ ≤ 0 for all i = 1, ..., k, then ⟨a, x⟩ ≤ 0

(ii) There exists (λ1, ..., λk) ∈ Rk
+ such that a =

∑k
i=1 λiai.

Farkas lemma can be interpreted in terms of linear transformations and combined with result
about differentiation (recall that derivatives correspond to local linear approximations) to prove the
following proposition :

Proposition 4.5. Let x∗ a local extremum of f under g = c. If f is differentiable at x∗, g is C1

in a neighborhood of x∗ and g′(x∗) (understood as the linear map from Rn to Rk corresponding to
the matrix) is surjective, then for every h ∈ Rn :

g′(x∗)h = 0 ⇒ ∇f(x∗) = 0

Observe that h 7→ g′(x∗)h surjective corresponds exactly to the condition that the family
(∇g1(x

∗), ...,∇gk(x
∗)) is independent (no two constraints are colinear at the optimum, i.e there

is no ”redundant” constraint). The theorem follows from the proposition or Farkas lemma.
Using the Lagrangian formulation, we can further give sufficient second order conditions to be

a local maximum.

Theorem 4.6. Let f, g1, ..., gk : D ⊂ Rn → R and c = (c1, ..., ck) ∈ Rk. If x∗ ∈ int(D) is a local
maximum of f under the constraints gi = ci for all i and :

(i) f is twice differentiable at x∗

(ii) g is C2 in a neighborhood of x∗

(iii) the family (∇g1(x
∗), ...,∇gk(x

∗)) is independent

then there exists (λ1, ..., λk) ∈ Rk such that :

∇xL(x∗, λ) = ∇f(x∗)−
k∑

i=1

λi∇gi(x
∗) = 0

hTHxxL(x∗, λ)h ≤ 0 for all h ∈ ker(g′(x∗))

The last condition equivalently means that the Lagrangian, interpreted as a function of x,
is locally concave in the constraint space. If this function is further globally concave, then the
maximum is unique (the proof is similar to the previous unconstrained case). We will see those
results again in more detail and more generality in the next section when incorporating inequality
constraints.

5 Inequality Contstraints : Kuhn-Tucker Theorem

We now wish to extend the results of the previous section to inequality constraints. Inequality
constraints are more complex in nature because they might not bind : if we have a constraint
g(x) ≤ c, and it turns out that at the optimum g(x) < c, then x is essentially an interior point
and it is ”as if” the constraint was not there locally. On the other if we saturate the constraint, i.e
g(x) = c at the optimum, then we need a machinery similar to that we just introduced to deal with
an extra equality constraint – given the admissible directions of increase are locally reduced.

This section discusses the Kuhn-Tucker Theorem, which is a crucial result for constrained opti-
mization. You may refer to FMEA Chapter 3.3 - 3.10.

First, let’s define the problem we study in this section, and introduces the concept of constraint
qualification (CQ).
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Definition 5.1. Let X be an open set in Rn, and let f : X → R, g : X → Rk, and h : X → Rm be
C1 functions. Consider the problem

max
x∈X

f (x) s.t. g (x) ≥ 0 and h (x) = 0

For a feasible point x̂ ∈ X, the inequality constraint gj (x) ≥ 0 is said to be binding at x̂ iff
gj (x̂) = 0.

We say that the constraint qualification (CQ) holds at x̂ iff the derivatives of all binding
constraints {

∇gj (x̂)
}
{j:gjbinding at x̂} ∪

{
∇hl (x̂)

}m
l=1

in Rn are linearly independent; otherwise we say that the constraint qualification (CQ) fails
at x̂.

As stated in the definition above, we study the problem

max
x∈X

f (x) s.t. x ∈ D

where the constraint set D is described by a set of k weak inequalities and a set of m equalities:

D :=
{
x ∈ X : g (x) ≥ 0 and h (x) = 0

}
In the problem, we require the domain X to be open, and the inequalities to be weak5.
In practice, we often define the Lagrangian function of the maximization problem as

L (x, λ, µ) = f (x) + λT g (x) + µTh (x)

= f (x) +
k∑

j=1

λjgj (x) +
m∑
l=1

µlhl (x)

and λj ’s and µl’s are called the Lagrangian multipliers.
Now let’s state Kuhn-Tucker theorem.

Theorem 5.2 (Kuhn-Tucker). Let X be an open set in Rn, and let f : X → R, g : X → Rk, and
h : X → Rm be C1 functions. Consider the problem

max
x∈X

f (x) s.t. g (x) ≥ 0 and h (x) = 0

5If we have strict inequality in some of the constraints, then those constraints should be considered as a part of
the definition of the open set X. If X is not open by the nature of the problem, then we should consider the ”closed
boundary” of X as a weak inequality constraint. For example, if the problem is

max
(x1,x2)∈R2

+

x1x2

s.t. {
x2 > 1
x1 + x2 ≤ 4

then we should rewrite it as
max

(x1,x2)∈R×(1,+∞)
x1x2

s.t. {
x1 ≥ 0
4− x1 − x2 ≥ 0
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If x∗ is a maximizer of the problem above, and CQ holds at x∗, then there exists a unique (λ, µ) ∈
Rk
+ × Rm s.t. the following two conditions hold:
(1) First order condition (FOC):

∇f
(
x∗
)
+ λT g′

(
x∗
)
+ µTh′

(
x∗
)
= 0

(2) Complementary slackness condition (CSC):

hl(x
∗) = 0

for each l ∈ {1, . . . ,m}.
λj ≥ 0, gj

(
x∗
)
≥ 0, and λjgj

(
x∗
)
= 0

for each j ∈ {1, . . . , k}.

Clearly, when there is no constraint (k = m = 0), the problem in the theorem above becomes
maxx∈X f (x), and the FOC reduces to ∇f (x∗) = 0, which is the necessary condition we saw in the
previous section for an interior maximizer x∗ at which f is differentiable. Under the assumptions of
this theorem, x∗ is automatically an interior point of X because X is open, and f is differentiable
at x∗ because f is differentiable everywhere.

The FOC in the theorem above is essentially

∇f
(
x∗
)
+

k∑
j=1

λj∇gj
(
x∗
)
+

m∑
l=1

µl∇hl
(
x∗
)
= 0

or equivalently, for each i ∈ {1, . . . , n}

∂f

∂xi

(
x∗
)
+

k∑
j=1

λj
∂gj
∂xi

(
x∗
)
+

m∑
l=1

µl
∂hl
∂xi

(
x∗
)
= 0

which is essentially setting the partials of the Lagrangian L(x, λ, µ) w.r.t. xi, i = 1, 2, ..., n to
zero:

d

dx
L (x, λ, µ)

∣∣∣∣
x=x∗

= 0

or equivalently, for each i ∈ {1, . . . , n}

∂L
∂xi

(
x∗, λ, µ

)
= 0

Simply put, Kuhn-Tucker theorem states that if x∗ is a maximizer and satisfies CQ, then there
exist λ and µ s.t. (x∗, λ, µ) satisfies FOC + CSC.

In practice, we often write down the following system of conditions
x ∈ X
∂f
∂xi

(x) +
∑k

j=1 λj
∂gj
∂xi

(x) +
∑m

l=1 µl
∂hl
∂xi

(x) = 0, ∀ i = 1, . . . n

hl (x) = 0, ∀ l = 1, . . .m
λj ≥ 0, gj (x) ≥ 0, and λjgj (x) = 0, ∀ j = 1, . . . , k

which is sometimes known as the Kuhn-Tucker condition. Then we can solve for all solutions
(x, λ, µ) to this system. Kuhn-Tucker theorem states that if x∗ is a maximizer and satisfies CQ, x∗
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must be a part of some solution (x, λ, µ) to the K-T condition, and therefore, we must be able to
find this x∗ by solving for all solutions to the K-T condition.

Notice that the theorem only works for maximizer x∗’s at which CQ holds. If CQ fails at x∗,
then there may not exist (λ, µ) s.t. (x∗, λ, µ) satisfies FOC and CSC, even if x∗ is a maximizer of the
problem. Therefore, we may never be able to find such maximizers by solving the K-T condition.
An example is given below.

Example 5.3. Consider the problem
max

(x1,x2)∈R2
−x2

s.t.
x21 − x32 = 0

Because x32 = x21 ≥ 0, and so x2 ≥ 0, and clearly the unique maximizer of this problem is(
x∗1, x

∗
2

)
= (0, 0). However, if we write down the Lagrangian

L (x1, x2, λ) = −x2 + λ
(
x21 − x32

)
and consider the FOC {

∂L
∂x1

(x1, x2, λ) = 2λx1 = 0
∂L
∂x2

(x1, x2, λ) = −1− 3λx22 = 0

clearly there exists no λ ∈ R s.t. (0, 0, λ) satisfies the FOC above. Therefore, we will never find the
correct maximizer

(
x∗1, x

∗
2

)
= (0, 0) by solving the FOC.

This is not a violation of Kuhn-Tucker theorem because CQ fails at (0, 0), and so K-T theorem
is silent about the maximizer

(
x∗1, x

∗
2

)
= (0, 0). To see why CQ fails at (0, 0), let h (x1, x2) := x21−x32

and we have ∇h (0, 0) = (0, 0), which is a not linearly independent when considered as a set of only
one vector.

The right way to use K-T theorem to find the maximizers of a problem is the following:
First, we collect all x’s that appears in some solution (x, λ, µ) to K-T condition, and consider

them as ”type 1” candidates for the maximizers. Then we collect all x’s at which CQ fails, and
consider them as ”type 2” candidates. Then we combine the two types of candidates and examine
them carefully. It is possible that the problem does not have a solution at all, in which case no
candidate is a maximizer. However, if we know that the problem has a maximizer, possibly by
Weierstrass theorem, then we know that it must be among the candidates we have found. Then the
maximizers are exactly those candidates that give us the highest value among all candidates.

Our procedure above involves solving the K-T condition
x ∈ X
∂f
∂xi

(x) +
∑k

j=1 λj
∂gj
∂xi

(x) +
∑m

l=1 µl
∂hl
∂xi

(x) = 0, ∀ i = 1, . . . n

hl (x) = 0, ∀ l = 1, . . .m
λj ≥ 0, gj (x) ≥ 0, and λjgj (x) = 0, ∀ j = 1, . . . , k

and one may wonder how we can solve this system in practice. This problem is difficult in general,
and we can only analytically solve this system when the functions take very simple forms. Notice
that the third line implies that either gj (x) = 0 or gj (x) > 0 ,which implies λj = 0, and so we
have two cases to discuss for each j. In total, we have 2k cases to discuss. In each case, we have
n+m+ k equations and k weak inequalities for n+m+ k unknowns. Also, the number 2k of cases
we need to discuss increases very fast as k increases, and this is another difficulty for this kind of
problems in general.
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In many economic applications, we might be able to use our economic intuitions to guess which
constraints are binding at optimum and which are not. You can verify your guess that the constraint
gj (x) ≥ 0 is binding at optimum by showing that there is no solution to the K-T condition with
λj = 0.

5.1 Applying Kuhn-Tucker Theorem: an Example

Sometimes, K-T theorem cannot be directly applied to solve a problem, and we need to analyze the
problem carefully, and try to transform the original problem into another to which K-T theorem
applies. Now let’s carefully analyze a specific maximization problem as an example.

Consider the problem
max

(x1,x2)∈R2
+

xα1x
1−α
2

s.t.
p1x1 + p2x2 ≤ m

where α ∈ (0, 1), p1, p2 ∈ R++, and m ∈ R+ are parameters.
The first issue we should consider is the existence of maximizers. Because power function is

continuous, and the objective function xα1x
1−α
2 is a product of two power functions, and so it is

continuous. If we can also show that the constraint set

D (p,m) :=
{
(x1, x2) ∈ R2

+ : p1x1 + p2x2 ≤ m
}

is a nonempty compact set, then by Weierstrass theorem the problem must have a solution. Clearly
we have (0, 0) ∈ D, and so we only need to show compactness

Claim 5.4. The constraint set D (p,m) is compact in
(
R2, d2

)
, for any p ∈ R2

++ and m ∈ R+.

Proof. By Heine-Borel, it is sufficient to show that D is closed and bounded in
(
R2, d2

)
.

(1) Closedness
Take any sequence (xn) in D s.t. xn → x0 ∈ R2. WTS: x0 ∈ D (Recall that what we use here

is the sequential definition of closed sets.)
Because xn → x0, we have xn1 → x01, and xn2 → x02. Because for each n, we have xn ∈ D, and

so xn1 ≥ 0 and xn2 ≥ 0, and so x01 ≥ 0 and x02 ≥ 0 (weak inequality is preserved under limit), and
therefore x0 ∈ R2

+. Because p1x1 + p2x2 is a continuous function in x, we have p1x
n
1 + p2x

n
2 →

p1x
0
1 + p2x

0
2. Because p1x

n
1 + p2x

n
2 ≤ m for each n, we have p1x

0
1 + p2x

0
2 ≤ m. As a result, we have

x0 ∈ D.
(2) Boundedness
Take any x ∈ D, we have p1x1 ≤ m and p2x2 ≤ m, and so

d2 (x, 0) =
√

x21 + x22 ≤

√(
m

p1

)2

+

(
m

p2

)2

= m

√
p−2
1 + p−2

2

Let r := m
√
p−2
1 + p−2

2 + 1, and we have D ⊂ Br (0).

In fact, this claim is also true in Rn, i.e. D (p,m) :=
{
x ∈ Rn

+ : p · x ≤ m
}
is compact in (Rn, d2)

for any p ∈ Rn
++ and m ∈ R+.

According to the claim above, we know that the problem always has a solution by Weierstrass
theorem.
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The difficulty to apply K-T theorem is that the objective function has the domain R2
+ by its

nature, because the power function zα is only defined on R+ for α ∈ (0, 1) in general. Clearly the
domain R2

+ is not open in R2, and so it does not satisfy the assumption of K-T theorem. Although
it is possible to smoothly extend the objective function xα1x

1−α
2 to R2, we still cannot apply K-T

theorem because the objective function is not differentiable on the two axes. Therefore, we need to
approach the problem in another way.

If m = 0, then the only feasible point is (x1, x2) = (0, 0), and the problem becomes trivial: it
has a unique maximizer (0, 0), and the maximum is 0.

If m > 0, consider the feasible point x̂ =
(
m/ (2p1) ,m/ (2p2)

)
∈ R2

++. At this point, the
objective takes a strictly positive value. However, whenever x1 = 0 or x2 = 0, the objective takes
the value 0. Therefore, there cannot be any maximizer on the two axes, and it is without loss of
optimality to focus on the domain R2

++. Consider the new problem

max
(x1,x2)∈R2

++

xα1x
1−α
2

s.t.
p1x1 + p2x2 ≤ m

This new problem has the same set of maximizers as the original problem, and so we can solve this
new problem instead. To see this, take any maximizer x∗ of the original problem, and then we have
f (x∗) ≥ f (x̂) > 0, and so x∗ ∈ R2

++, and so it is a maximizer of the new problem. On the other
hand, take any maximizer x∗ of the new problem. Because f (x∗) ≥ f (x̂) > 0, and f (x) = 0 for
any x ∈ R2

+\R2
++, we know that x∗ is a maximizer of the original problem.

In this new problem, the domain R2
++ is an open set in R2. Also, the objective function xα1x

1−α
2

is C1 on the entire domain R2
++, and so K-T theorem applies. Define g : R2

++ → R as

g (x) := m− p1x1 − p2x2

and x ∈ R2
++, we have ∇g (x) = (−p1,−p2) ̸= 0, which is linearly independent when considered as

a set of only one vector. Therefore, CQ holds at all feasible points.
Write down the Lagrangian

L (x1, x2, λ) = xα1x
1−α
2 + λ (m− p1x1 − p2x2)

and then the K-T condition
x ∈ R2

++

αxα−1
1 x1−α

2 − λp1 = 0
(1− α)xα1x

−α
2 − λp2 = 0

λ ≥ 0, m− p1x1 − p2x2 ≥ 0, and λ (m− p1x1 − p2x2) = 0

By the two FOCs, we have λ > 0, and so by CSC we have m − p1x1 − p2x2 = 0. Also, comparing
the two FOCs gives us

αxα−1
1 x1−α

2

(1− α)xα1x
−α
2

=
λp1
λp2

i.e.
p1x1
p2x2

=
α

1− α

and so we have

(x1, x2, λ) =

(
αm

p1
,
(1− α)m

p2
,
αα (1− α)1−α

pα1 p
1−α
2

)
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as the unique solution to the K-T condition. So (x1, x2) =
(
αm/p1, (1− α)m/p2

)
is the unique

type 1 candidate in this problem.
Because CQ holds at all feasible point, there is no type 2 candidate at all. Because the problem

has a solution by Weierstrass, we know that the unique type 1 candidate

(x1, x2) =

(
αm

p1
,
(1− α)m

p2

)
must be the unique maximizer of the problem.

This conclusion also applies to the case m = 0, and so we can unify the two cases. Therefore,
for any α ∈ (0, 1), p1, p2 ∈ R++, and m ∈ R+, the problem has a unique maximizer

(
x∗1, x

∗
2

)
=(

αm/p1, (1− α)m/p2
)
.

5.2 Sufficient Conditions

The K-T theorem we have studied provides a condition that is necessary for maximizers at which
CQ holds, and it is by no means a sufficient condition. However, the theorem below provides a
sufficient condition for an x∗ being a maximizer of a constrained maximization problem.

Theorem 5.5. Let X be an open and convex set in Rn, and let f : X → R, g : X → Rk, and
h : X → Rm be C1 functions. Consider the problem

max
x∈X

f (x) s.t. g (x) ≥ 0 and h (x) = 0

If x∗ is feasible, and there exists (λ, µ) ∈ Rk
+× Rm s.t. the following three conditions hold

(1) FOC:
∇f

(
x∗
)
+ λT g′

(
x∗
)
+ µTh′

(
x∗
)
= 0

(2) CSC:
λj ≥ 0, gj

(
x∗
)
≥ 0, and λjgj

(
x∗
)
= 0

for each j ∈ {1, . . . , k}, and
(3) The Lagrangian Lλ,µ : X → R defined as

Lλ,µ (x) := f (x) + λT g (x) + µTh (x)

is a concave function,
then x∗ is a maximizer of this problem.

In the theorem above, condition (1) and (2) are FOC and CSC in the K-T theorem. The
additional requirement (3) requires the Lagrangian function to be concave in x. According to this
theorem, when we solve the K-T condition for type 1 candidates, if we happen to find a solution(
x̂, λ̂, µ̂

)
to K-T condition s.t. under this

(
λ̂, µ̂

)
the Lagrangian is a concave function in x, then

we can immediately conclude that x̂ is a maximizer of the problem. But keep in mind that there
might be other maximizers, since the theorem is silent about uniqueness.

As a special case of the theorem above, when there is no constraint at all, i.e. k = m = 0, the
FOC reduces to ∇f (x∗) = 0, and the concavity of the Lagrangian reduces to the concavity of the
objective function f . This is consistent with Theorem 3.3.

The next theorem provides yet another sufficient condition for an x∗ being a maximizer.
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Theorem 5.6. Let X be an open and convex set in Rn, and let f : X → R, g : X → Rk, and
h : X → Rm be C1 functions, and f is concave. Consider the problem

max
x∈X

f (x) s.t. g (x) ≥ 0 and h (x) = 0

If x∗ is feasible, and there exists (λ, µ) ∈ Rk
+× Rm s.t. the following three conditions hold

(1) FOC:
∇f

(
x∗
)
+ λT g′

(
x∗
)
+ µTh′

(
x∗
)
= 0

(2) CSC:
λj ≥ 0, gj

(
x∗
)
≥ 0, and λjgj

(
x∗
)
= 0

for each j ∈ {1, . . . , k}, and
(3) λjgj is quasi-concave for each j = 1, . . . , k, and µlhl is quasi-concave for each l = 1, . . . ,m,
then x∗ is a maximizer of this problem.

This theorem requires the objective f to be concave, gj to be quasi-concave if λj > 0, hl to be
quasi-concave (quasi-convex) if µl > 0 (µl < 0). There is no restriction on gj (hl) if λj (µl) is zero.

We often deal with objective functions which are quasiconcave, rather than concave. The follow-
ing result gives conditions under which the Kuhn-Tucker conditions are sufficient for a maximum,
when f is quasiconcave:

Theorem 5.7. Let X be an open and convex set in Rn, and let f : X → R, g : X → Rk, and
h : X → Rm be C1 functions, and f is quasi-concave. Consider the problem

max
x∈X

f (x) s.t. g (x) ≥ 0 and h (x) = 0

If x∗ is feasible, and there exists (λ, µ) ∈ Rk
+× Rm s.t. the following three conditions hold

(1) FOC:
∇f

(
x∗
)
+ λT g′

(
x∗
)
+ µTh′

(
x∗
)
= 0

(2) CSC:
λj ≥ 0, gj

(
x∗
)
≥ 0, and λjgj

(
x∗
)
= 0

for each j ∈ {1, . . . , k}, and
(3) ∇f(x∗) ̸= 0, λjgj is quasi-concave for each j = 1, . . . , k, and µlhl is quasi-concave for each

l = 1, . . . ,m,
then x∗ is a maximizer of this problem.

5.3 Comparative Statics

Let’s consider the parameterized optimization problem P (α):

max
x∈X

f (x, α) s.t. g (x, α) ≥ 0 and h (x, α) = 0

where the parameter α is taken from some set A. For each α, if the problem P (α) has a solution,
then we can calculate the maximum value of the problem P (α), and define it as f∗ (α). Then it
might be interesting to study how the value function f∗ (α) changes as the parameter α changes.
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Theorem 5.8 (Envelope). Let X be an open set in Rn, and A be an open set of parameters in Rs.
Let f : X × A → R, g : X × A → Rk, and h : X × A → Rm be C1 functions. For each parameter
α ∈ A, define the problem P (α) as

max
x∈X

f (x, α) s.t. g (x, α) ≥ 0 and h (x, α) = 0

Let Â :=
{
α ∈ A : argmaxP (α) ̸= ∅

}
, and define the value function f∗ : Â → R as

f∗ (α) := max
x∈X

{
f (x, α) : g (x, α) ≥ 0 and h (x, α) = 0

}
For parameter α∗ ∈ A, suppose:
(1) In the problem P (α∗), there is a unique maximizer x∗, and CQ holds at x∗.
(2) There exists ε > 0 and r > 0 s.t. ∀ α ∈ Bε (α

∗),
(
argmaxP (α)

)
∩Br (x

∗) ̸= ∅.
Then the value function f∗ is differentiable at α∗, and

f∗′ (α∗) = d

dα
L
(
x∗, λ∗, µ∗, α

)∣∣∣∣
α=α∗

=
d

dα
f
(
x∗, α

)∣∣∣∣
α=α∗

+ λ∗T d

dα
g
(
x∗, α

)∣∣∣∣
α=α∗

+ µ∗T d

dα
h
(
x∗, α

)∣∣∣∣
α=α∗

where λ∗ and µ∗ are the unique Lagrangian multipliers found by K-T theorem for the problem P (α∗).

In the theorem above, condition (1) guarantees that K-T theorem applies to the problem P (α∗),
and so we can find a unique λ∗ and µ∗ s.t. (x∗, λ∗, µ∗) satisfies FOC and CSC. Condition (2) implies
that f∗ (α) is well-defined for any α ∈ Bε (α

∗), and so we can talk about differentiability of f∗ at
α∗.

The proof of this theorem is not straightforward. However, let’s provide a heuristic ”proof”,
assuming away some technical aspects of the problem. Assume that for each α ∈ Bε (α

∗), we
can find x (α) ∈ argmaxP (α) s.t. x (α) is differentiable at α∗. Also, assume that for each α ∈
Bε (α

∗), in the problem P (α), CQ holds at x (α). By K-T theorem, there exists λ (α) and µ (α) s.t.(
x (α) , λ (α) , µ (α)

)
satisfies FOC and CSC for the problem P (α). Assume that λ (α) and µ (α)

are differentiable at α∗.
By definition of f∗, we have f∗ (α) = f

(
x (α) , α

)
for any α ∈ Bε (α

∗), and therefore

f∗′ (α∗) = d

dα
f
(
x (α) , α

)∣∣∣∣
α=α∗

=
d

dα

[
f
(
x (α) , α

)
+ λ (α)T g

(
x (α) , α

)
+ µ (α)T h

(
x (α) , α

)]∣∣∣∣
α=α∗

The second equality is because CSC implies that λ (α)T g
(
x (α) , α

)
and µ (α)T h

(
x (α) , α

)
are

constantly 0 for any α ∈ Bε (α
∗). Then by chain rule, we have

f∗′ (α∗) = d

dx
f
(
x, α∗)∣∣∣∣

x=x∗
· x′
(
α∗)+ d

dα
f
(
x∗, α

)∣∣∣∣
α=α∗

+ λ∗T

(
d

dx
g
(
x, α∗)∣∣∣∣

x=x∗
· x′
(
α∗)+ d

dα
g
(
x∗, α

)∣∣∣∣
α=α∗

)

+ µ∗T

(
d

dx
h
(
x, α∗)∣∣∣∣

x=x∗
· x′
(
α∗)+ d

dα
h
(
x∗, α

)∣∣∣∣
α=α∗

)
+ g

(
x∗, α∗)T · λ′ (α∗)+ h

(
x∗, α∗)T · µ′ (α∗)
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By feasibility, the last term h (x∗, α∗)T · µ′ (α∗) = 0 · µ′ (α∗) = 0. In the second last term, if
gj (x

∗, α∗) = gj
(
x (α∗) , α∗) > 0, we have gj

(
x (α) , α

)
> 0 when α is in some open ball around α∗.

By CSC, we have λj (α) = 0 when α is in this open ball around α∗, and so λ′
j (α

∗) = 0. Therefore,

the second last term g (x∗, α∗)T · λ′ (α∗) = 0. Therefore, we have

f∗′ (α∗)
=

(
d

dx
f
(
x, α∗)∣∣∣∣

x=x∗
+ λ∗T d

dx
g
(
x, α∗)∣∣∣∣

x=x∗
+ µ∗T d

dx
h
(
x, α∗)∣∣∣∣

x=x∗

)
· x′
(
α∗)

+
d

dα
f
(
x∗, α

)∣∣∣∣
α=α∗

+ λ∗T d

dα
g
(
x∗, α

)∣∣∣∣
α=α∗

+ µ∗T d

dα
h
(
x∗, α

)∣∣∣∣
α=α∗

By FOC, we have

d

dx
f
(
x, α∗)∣∣∣∣

x=x∗
+ λ∗T d

dx
g
(
x, α∗)∣∣∣∣

x=x∗
+ µ∗T d

dx
h
(
x, α∗)∣∣∣∣

x=x∗
= 0

and therefore we have

f∗′ (α∗) = d

dα
f
(
x∗, α

)∣∣∣∣
α=α∗

+ λ∗T d

dα
g
(
x∗, α

)∣∣∣∣
α=α∗

+ µ∗T d

dα
h
(
x∗, α

)∣∣∣∣
α=α∗

=
d

dα
L
(
x∗, λ∗, µ∗, α

)∣∣∣∣
α=α∗

which is the envelope result we want to show6.
With the envelope theorem, we do not need to derive the value function f∗(α) explicitly to

analyze how it responds to changes to the parameter α. The derivative of the Lagrangian are
usually simpler, because in many cases the constraints are linear in the parameters (e.g. the budget
constraint is linear in endowment and prices).

Now let’s verify the equation in the envelope theorem for the eample given in Section 4.4. The
solution to the Kuhn-Tucker conditions is given as

(
x∗1(p1, p2,m), x∗2(p1, p2,m), λ∗(p1, p2,m)

)
=

(
αm

p1
,
(1− α)m

p2
,
αα (1− α)1−α

pα1 p
1−α
2

)

The value function of the maximization problem is

v(p1, p2,m) =
(
x∗1
)α (

x∗2
)1−α

=
mαα(1− α)1−α

pα1 p
1−α
2

Taking its first order derivative w.r.t. (p1, p2,m) we have:

∂v

∂p1
= −mα1+α(1− α)1−α

pα+1
1 p1−α

2

= −λ∗x∗1

∂v

∂p2
= −mαα(1− α)2−α

pα1 p
2−α
2

= −λ∗x∗2

6In the heuristic calculation above, we assumed that x (α), λ (α), and µ (α) are all differentiable at α∗. However,
the result is still true even when this assumption does not hold.
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∂v

∂m
=

αα(1− α)1−α

pα1 p
1−α
2

= λ∗

From the envelope theorem, we have:
∂L
∂p1

(x∗1, x
∗
2, λ

∗, p1, p2,m) = −λ∗x∗1,
∂L
∂p2

(x∗1, x
∗
2, λ

∗, p1, p2,m) = −λ∗x∗2,
∂L
∂m(x∗1, x

∗
2, λ

∗, p1, p2,m) = λ∗.

5.4 Interpretation of Lagrangian Multipliers*

We can use envelope theorem to obtain an interpretation of the Lagrangian multipliers.
Let X be an open set in Rn, and let f : X → R, g : X → Rk, and h : X → Rm be C1 functions.

Consider the parameterized problem P (a, b)

max
x∈X

f (x)

s.t. {
g (x) + a ≥ 0
h (x) + b = 0

where (a, b) ∈ Rk ×Rm are parameters. If the problem P (a, b) has a solution, define f∗ (a, b) as the
maximum value of the problem P (a, b).

When we move (a, b) around (a∗, b∗) = (0, 0), we are considering perturbations around the
original problem P (0, 0)

max
x∈X

f (x)

s.t. {
g (x) ≥ 0
h (x) = 0

A small positive aj can be viewed as a slight relaxation of the constraint gj (x) ≥ 0, which
might make the feasible set slightly larger, which in turn might make the maximum value slightly
higher. We are interested in how such a slight relaxation of the constraint gj (x) ≥ 0 will affect the

maximum value, i.e. we are interested in the partial derivative ∂f∗

∂aj
(0, 0).

If in the original problem P (0, 0) there is a unique maximizer x∗, CQ holds at x∗, and ∃ ε > 0
and r > 0 s.t. ∀ (a, b) ∈ Bε (0, 0), ∃ x ∈

(
argmaxP (a, b)

)
∩ Br (x

∗), then we can invoke the
envelope theorem at (a∗, b∗) = (0, 0), and we have

d

d (a, b)
f∗ (a, b)

∣∣∣∣
(a,b)=(0,0)

=
d

d (a, b)
f
(
x∗
)∣∣∣∣

(a,b)=(0,0)

+ λ∗T d

d (a, b)

(
g
(
x∗
)
+ a
)∣∣∣∣

(a,b)=(0,0)

+ µ∗T d

d (a, b)

(
h
(
x∗
)
+ b
)∣∣∣∣

(a,b)=(0,0)

= 0 + λ∗T ·
[
Ik|0k×m

]
+ µ∗T ·

[
0m×k|Im

]
= (λ1, . . . , λk, µ1, . . . µm)

Therefore, we have
∂f∗

∂aj
(0, 0) = λj
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for each j = 1, . . . , k, and
∂f∗

∂bl
(0, 0) = µl

for each l = 1, . . . ,m.
Therefore, the Lagrangian multiplier λj corresponding to the inequality constraint gj (x) ≥ 0

measures the marginal increase in the maximum value under a marginal relaxation of the constraint
gj (x) ≥ 0. As a consequence, λj is sometimes called the shadow price of the constraint
gj (x) ≥ 0.

In a firm’s maximization problem, the objective function is usually the firms profit function,
and a constraint gj (x) ≥ 0 usually represents the requirement that total usage of some resource
(labor/capital/electricity/...) is weakly less than the total amount of this resource available to the
firm. Then λj can be called the shadow price of this resource (labor/capital/electricity/...),
and by envelope theorem, it measures the marginal increase in profit by marginally increasing the
total amount of this resource available to the firm. In other words, λj is the price the firm is willing
to pay for an additional unit of this resource.

By K-T theorem, the Lagrangian multiplier λj corresponding to the weak inequality constraint
gj (x) ≥ 0 is required to be nonnegative. This is consistent with our interpretation of λj as the
marginal gain by slightly relaxing the constraint gj (x) ≥ 0, because a relaxation of a constraint never
decreases the maximum value. Also, CSC in K-T theorem states that if the constraint gj (x) ≥ 0
is not binding at optimum, i.e. gj (x

∗) > 0, where x∗ is the unique maximizer, then we must have
λj = 0, i.e. we will gain nothing by slightly relaxing the constraint. On the other hand, if there
is a strictly positive marginal gain by slightly relaxing the constraint gj (x) ≥ 0, i.e. λj > 0, then
there is no reason not to fully exploit the constraint in the optimization, i.e. the constraint must
be binding at optimum.

Notice that CSC only requires at least one of λj and gj (x) is zero, and in fact they could be
both zero. In other words, it is possible for some constraint to be binding, while slightly relaxing
this constraint does not increase the maximum. For example, consider the problem

max
x∈R

−x2 s.t. x ≥ 0

in which case both the Lagrangian multiplier is 0 and the constraint is binding.
The Lagrangian multiplier µl corresponding to the equality constraint hl (x) = 0 measures the

marginal change in the maximum value under a marginal perturbation of the equality constraint
hl (x) = 0. By its nature, it may be positive or negative, which is consistent with the assumption
on µl in K-T theorem.

6 A Brief Introduction to Dynamic Programming

Consider the infinite horizon inequality-constrained maximization problem (one-sector optimal growth
problem):

max
{ct,kt+1}∞t=0

∞∑
t=0

βtU(ct)

s.t. ct + kt+1 ≤ f(kt)

ct, kt+1 ≥ 0, t = 0, 1, ...

k0 > 0 given.
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where U and f are strictly increasing. Here the choice variables are a sequence {ct, kt+1}∞t=0.
Since k0 is a parameter, we can find the value function v : R+ → R which gives the maximized
value of the object function given k0:

v(k0) = max
{ct,kt+1}∞t=0

∞∑
t=0

βtU(ct)

s.t. ct + kt+1 ≤ f(kt)

ct, kt+1 ≥ 0, t = 0, 1, ...

k0 > 0 given.

Since the problem is time-independent, v(k1) would be the maximized value of the object func-
tion if the program starts in period t + 1. βv(k1) is this value discounted at period t = 0. So we
can write the problem in t = 0 as

max
c0,k1

U(c0) + βv(k1)

s.t. c0 + k1 ≤ f(k0)

c0 ≥ 0, k1 ≥ 0

k0 > 0 given.

By definition of v we substitute out c0:

v(k0) = max
0≤k1≤f(k0)

U
(
f(k0)− k1

)
+ βv(k1)

Since subscript does not matter, we can write

v(k) = max
0≤y≤f(k)

U
(
f(k)− y

)
+ βv(y)

Now the unknown is not a variable but the function v. We call this a functional equation.

Theorem 6.1 (Blackwell’s sufficient condition for contraction). Let X ⊂ Rk and B(X) a real
vector space of bounded functions f : X → R, with norm defined as ||f || = supx∈X |f(x)|. Let
T : B(X) → B(X) be an operator satisfying

(1) (monotonicity) If f, g ∈ B(X) and f(x) ≤ g(x) for ∀x ∈ X, then (Tf)(x) ≤ (Tg)(x) for
∀x ∈ X.

(2) (discounting) There exists some β ∈ (0, 1) s.t.

(T (f + a))(x) ≤ (Tf)(x) + βa, for ∀f ∈ B(X), a ≥ 0, x ∈ X,

where (f + a) is defined as (f + a)(x) = f(x) + a.
Then T is a contraction with modulus β.

In dynamic programming, Blackwell’s sufficient conditions are often easy to verify. In the
problem above, we define an operator T as

(Tv)(k) = max
0≤y≤f(k)

U
(
f(k)− y

)
+ βv(y)

We want to find a fixed point of operator T , i.e. a function v s.t. Tv = v. We can verify
that T is a contraction using Blackwell, and by contraction mapping theorem we know that such
a fixed point exists. To find it we iteratively apply T , starting with an arbitrary function v0 until
convergence (under certain specified convergence criteria).
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