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Throughout this lecture, the vector spaces are real vector spaces, unless stated otherwise.

1 Convex Sets

Definition 1.1. In real vector space V , a set S ⊂ V is a convex set iff

λx+ (1− λ) y ∈ S

for any λ ∈ [0, 1] and x, y ∈ S.

Notice that it makes sense to talk about convex sets only in a vector space, since we need to be
able to perform vector addition and scalar multiplication. In most applications, the vector space is
Rn.

For finitely many vectors x1, x2, . . . , xn in vector space V , a convex combination of x1, x2, . . . , xn
is a vector

∑n
i=1 λixi for scalars λ1, λ2, . . . , λn ∈ R+ with

∑n
i=1 λi = 1. Different from linear com-

bination, convex combination requires that the coefficient λi’s are nonnegative and that they sum
up to 1.

By definition, a set S is convex iff any combination of two vectors in S is still in S. However,
the next result says that S is convex iff any combination of finitely many vectors in S is still in S.

∗The present lecture notes were largely based on math camp materials from César Barilla, Palaash Bhargava, Paul
Koh, and Xuan Li. All errors in this document are mine. If you find a typo or an error, please send me an email at
ac4790@columbia.edu.
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Claim 1.2. In vector space V , the set S ⊂ V is convex iff any convex combination of x1, x2, . . . , xn ∈
S is also in S.

Proof. ⇐ is trivial.
⇒:
If n = 1, the statement is trivial.
If n = 2, then λ1x1 + λ2x2 ∈ S by definition of convexity.
Suppose when n = k, we have

∑k
i=1 λixi ∈ S for any λ1, λ2, . . . , λk ∈ R+ s.t.

∑k
i=1 λi = 1.

Consider n = k + 1. We have

k+1∑
i=1

λixi =
k∑

i=1

λixi + λk+1xk+1

=

 k∑
j=1

λj

 k∑
i=1

λi∑k
j=1 λj

xi

+ λk+1xk+1

Because
∑k

i=1
λi∑k

j=1 λj
= 1, we have

∑k
i=1

λi∑k
j=1 λj

xi ∈ S by the induction hypothesis. Because(∑k
j=1 λj

)
+ λk+1 = 1, we know that

∑k+1
i=1 λixi is a convex combination of λi∑k

j=1 λj
xi and xk+1,

which are both in S. Therefore,
∑k+1

i=1 λixi ∈ S.
So when n = k + 1, we also have

∑n
i=1 λixi ∈ S for any λ1, λ2, . . . , λn ∈ R+ s.t.

∑n
i=1 λi = 1.

By induction, for any n ∈ N, we have
∑n

i=1 λixi ∈ S for any λ1, λ2, . . . , λn ∈ R+ s.t.
∑n

i=1 λi =
1.

The next proposition states that any arbitrary intersection of convex sets is still convex.

Proposition 1.3. In vector space V , let {Sα}α∈A be a family of convex sets. Then
⋂

α∈A Sα is also
convex.

The proof is straightforward and follows from the definition of convexity.

Definition 1.4. In vector space V , the convex hull of set S ⊂ V is

Co (S) :=
⋂

C∈{X⊂V : X is convex and X⊃S}

C

Because intersection of convex sets is still convex, we know that Co (S) is convex, and therefore
the convex hull can be also interpreted as the smallest convex set that covers S.

The next result says that for a finite set S, the convex hull of S is simply the set of all convex
combinations of vectors in S.

Claim 1.5. In vector space V , let {x1, x2, . . . , xn} be a finite set of vectors. Then

Co
(
{x1, x2, . . . , xn}

)
=


n∑

i=1

λixi : λ1, λ2, . . . , λn ∈ R+, and

n∑
i=1

λi = 1
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Proof. ⊂: It is sufficient to show that the set on the right-hand side
n∑

i=1

λixi : λ1, λ2, . . . , λn ∈ R+, and
n∑

i=1

λi = 1

 =: A

covers {x1, . . . , xn} and is convex.
Clearly, A covers {x1, . . . , xn}. To show convexity, take any two vectors

∑n
i=1 λixi and

∑n
i=1 µixi

in A, and consider any α ∈ [0, 1], we have

α
n∑

i=1

λixi + (1− α)
n∑

i=1

µixi =
n∑

i=1

[
αλi + (1− α)µi

]
xi

Clearly, each coefficient αλi + (1− α)µi ≥ 0, and their sum

n∑
i=1

[
αλi + (1− α)µi

]
=

n∑
i=1

αλi +

n∑
i=1

(1− α)µi

= α

n∑
i=1

λi + (1− α)

n∑
i=1

µi

= α+ (1− α) = 1

and so α
∑n

i=1 λixi + (1− α)
∑n

i=1 µixi ∈ A.
⊃:
Take any x =

∑n
i=1 λixi ∈ A. WTS x ∈ Co

(
{x1, . . . , xn}

)
.

It is sufficient to show that
∑n

i=1 λixi ∈ C for any C ⊂ V s.t. C is convex and C ⊃ {x1, . . . , xn}.
This is true because of Claim 1.2.

1.1 Separating Hyperplane Theorem

In Rn, a hyperplane is defined as

H (p, c) := {x ∈ Rn : p · x = c}

where p ∈ Rn\ {0}, c ∈ R, and · is the dot product. A hyperplane H (p, c) cuts the whole space Rn

into halves. This is a generalization of a line in R2 and a plane in R3.

Theorem 1.6 (Minkowski’s Separating Hyperplane). Let S1 and S2 be two disjoint nonempty and
convex sets in Rn. Then there exist p ∈ Rn\ {0} and c ∈ R s.t. p ·x ≥ c for any x ∈ S1 and p ·x ≤ c
for any x ∈ S2.

See FMEA Section 13.6 for a proof. Minkowski’s separating hyperplane theorem states that for
any two disjoint nonempty and convex sets in Rn, we can find a hyperplane H (p, c) that weakly
separates them, i.e. one of the two sets is contained in H+ (p, c) := {x ∈ Rn : p · x ≥ c}, and the
other is contained in H− (p, c) := {x ∈ Rn : p · x ≤ c}.

Minkowski’s Separating Hyperplane is used in the proof of Second Welfare Theorem.
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1.2 Brouwer’s Fixed Point Theorem

Theorem 1.7 (Brouwer’s Fixed Point). Let X be a nonempty, compact, and convex set in Rn, and
consider a continuous function f : X → X. Then there exists x∗ ∈ X s.t. f (x∗) = x∗.

The theorem states that a continuous self-map defined on a nonempty, compact, and convex
set in Rn must have a fixed point. Let’s admit this result without proof. We will introduce its
generalization, Kakutani’s fixed point theorem, later when we discuss correspondences.

Brouwer’s fixed point theorem and Kakutani’s fixed point theorem play an important role in
the existence of Walrasian equilibria in the general equilibrium theory and the existence of Nash
equilibria in non-cooperative game theory.

2 Convex and Concave Functions

Definition 2.1. Consider a function f : S → R, where S is a convex set in vector space V .
(1) The function f is a convex function iff

f
(
λx+ (1− λ) y

)
≤ λf (x) + (1− λ) f (y)

for any x, y ∈ S and λ ∈ [0, 1].
(2) The function f is a concave function iff

f
(
λx+ (1− λ) y

)
≥ λf (x) + (1− λ) f (y)

for any x, y ∈ S and λ ∈ [0, 1].
(3) The function f is a strictly convex function iff

f
(
λx+ (1− λ) y

)
< λf (x) + (1− λ) f (y)

for any x, y ∈ S with x ̸= y and λ ∈ (0, 1).
(4) The function f is a strictly concave function iff

f
(
λx+ (1− λ) y

)
> λf (x) + (1− λ) f (y)

for any x, y ∈ S with x ̸= y and λ ∈ (0, 1).

In the definition above, we only take convex combination of two points in the domain. How-
ever, we can also take finitely many points in the domain and still have the function value at a
convex combination weakly less/greater than the convex combination of the function values for a
convex/concave function. This is known as Jensen’s inequality.

Theorem 2.2 (Jensen’s Inequality). Consider a function f : S → R, where S is a convex set in
vector space V .

(1) f is convex iff

f

 n∑
i=1

λixi

 ≤
n∑

i=1

λif (xi)

for any x1, x2, . . . , xn ∈ S and λ1, λ2, . . . , λn ∈ R+ with
∑n

i=1 λi = 1.
(2) f is concave iff

f

 n∑
i=1

λixi

 ≥
n∑

i=1

λif (xi)

for any x1, x2, . . . , xn ∈ S and λ1, λ2, . . . , λn ∈ R+ with
∑n

i=1 λi = 1.
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The proof is by induction on n, similar to the proof of Claim 1.2. This is left as an exercise.
For two vector spaces V and W , a function f : V → W is linear iff f (x1 + x2) = f (x1)+f (x2)

and f (λx) = λf (x). Clearly, a linear function f : V → R, where V is a vector space, is both convex
and concave, but not strictly convex or strictly concave.

Also, notice that f is (strictly) convex iff −f is (strictly) concave. The proof is left as an exercise.
Consider a function f : S → R. Define the graph of f as

G (f) :=
{
(x, y) ∈ S × R : y = f (x)

}
Notice that this is in fact a redundant notation, because G (f) is exactly f . Recall that a relation
from S to R is a subset of S × R.

Define the epigraph of f as

G+ (f) :=
{
(x, y) ∈ S × R : y ≥ f (x)

}
and the subgraph of f as

G− (f) :=
{
(x, y) ∈ S × R : y ≤ f (x)

}
The next result characterizes a convex/concave function using its epigraph/subgraph.

Proposition 2.3. Consider a function f : S → R, where S is a convex set in vector space V .
(1) f is convex iff its epigraph G+ (f) is a convex set in V × R.
(2) f is concave iff its subgraph G− (f) is a convex set in V × R.

Notice that V ×R is a vector space, since both V and R are vector spaces. So it makes sense to
talk about convex sets in V ×R. The vector addition and scalar multiplication in V ×R is defined
in a component-by-component fashion. That is, we define (x1, y1) + (x2, y2) := (x1 + x2, y1 + y2)
for any (x1, y1) , (x2, y2) ∈ V × R, where x1 + x2 is vector addition in V , and y1 + y2 is (vector)
addition in R. Also, we define λ (x, y) := (λx, λy) for any (x, y) ∈ V × R, where λx is the scalar
multiplication in V , and λy is the (scalar) multiplication in R.

Proof. (1)
⇒:
Take any (x1, y1) , (x2, y2) ∈ G+ (f) and any λ ∈ [0, 1]. WTS: λ (x1, y1) + (1− λ) (x2, y2) ∈

G+ (f).
Because (x1, y1) , (x2, y2) ∈ G+ (f), we have y1 ≥ f (x1) and y2 ≥ f (x2). Therefore,

f
(
λx1 + (1− λ)x2

)
≤ λf (x1) + (1− λ) f (x2) ≤ λy1 + (1− λ) y2

where the first inequality is by convexity of f . Therefore,

λ (x1, y1) + (1− λ) (x2, y2)

=
(
λx1 + (1− λ)x2, λy1 + (1− λ) y2

)
∈ G+ (f)

⇐:
Take any x1, x2 ∈ S and any λ ∈ [0, 1]. WTS:

f
(
λx1 + (1− λ)x2

)
≤ λf (x1) + (1− λ) f (x2)

Because
(
x1, f (x1)

)
,
(
x2, f (x2)

)
∈ G+ (f), and G+ (f) is convex, we have

λ
(
x1, f (x1)

)
+ (1− λ)

(
x2, f (x2)

)
∈ G+ (f)
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i.e.
(
λx1 + (1− λ)x2, λf (x1) + (1− λ) f (x2)

)
∈ G+ (f), which by definition implies

f
(
λx1 + (1− λ)x2

)
≤ λf (x1) + (1− λ) f (x2)

(2) can be shown symmetrically, which is left as an exercise.

In the proof above, we can also show (2) using the fact that f is concave iff −f is convex,
and the subgraph of f can be mapped to the epigraph of −f , in the sense that (x, y) ∈ G− (f) iff
(x,−y) ∈ G+ (−f).

The next result states that addition and multiplication by a nonnegative real number preserve
convexity/concavity of a function.

Proposition 2.4. Consider two functions f and g from S to R, where S is a convex set in vector
space V . If f and g are both convex/concave functions, then

(1) f + g is a convex/concave function, and
(2) cf is a convex/concave function, for any c ∈ R+.

The proof is straightforward.
The next result says: (1) a weakly increasing convex transformation of a convex function is still

convex, and (2) a weakly increasing concave transformation of a concave function is still concave.

Proposition 2.5. Consider a function f : S → R, where S is a convex set in vector space V .
(1) If f is convex and ϕ : R → R is weakly increasing and convex, then ϕ ◦ f is convex.
(2) If f is concave and ϕ : R → R is weakly increasing and concave, then ϕ ◦ f is concave.

The proof is left as an exercise.
A straightforward corollary of the proposition above is: (3) a weakly decreasing concave trans-

formation of a convex function is concave, and (4) a weakly decreasing convex transformation of a
concave function is convex. To see (3), suppose f is convex and ϕ : R → R is weakly decreasing and
concave, then −ϕ is weakly increasing and convex. Applying (1), we know that (−ϕ) ◦ f is convex.
Therefore, ϕ ◦ f = − (−ϕ) ◦ f is concave. (4) can be shown symmetrically.

Now let’s consider a family {fα}α∈A of real-valued functions defined on the same domain S.
If the set

{
fα (x) : α ∈ A

}
is bounded from above for each x ∈ S, we can define the function

sup {fα}α∈A : S → R as the pointwise supremum, i.e. for each x ∈ S,(
sup {fα}α∈A

)
(x) := sup

{
fα (x) : α ∈ A

}
Similarly, if the set

{
fα (x) : α ∈ A

}
is bounded from below for each x ∈ S, we can define the

function inf {fα}α∈A : S → R as the pointwise infimum, i.e. for each x ∈ S,(
inf {fα}α∈A

)
(x) := inf

{
fα (x) : α ∈ A

}
Now let’s state the following result.

Proposition 2.6. Consider a finite family of functions {fα}α∈A from S to R, where S is a convex
set in vector space V .

(1) If all functions in the family are convex, and the set
{
fα (x) : α ∈ A

}
is bounded from above

for each x ∈ S, then sup {fα}α∈A is a convex function.
(2) If all functions in the family are concave, and the set

{
fα (x) : α ∈ A

}
is bounded from below

for each x ∈ S, then inf {fα}α∈A is a concave function.

Shortly put, the proposition states that the sup of convex functions is still convex, and the inf
of concave functions is still concave.

6



Proof. (1) First, I claim that

G+
(
sup {fα}α∈A

)
=

⋂
α∈A

G+ (fα)

⊂:
Take any (x, y) ∈ G+

(
sup {fα}α∈A

)
. We have y ≥

(
sup {fα}α∈A

)
(x), and so y ≥ fα (x) for any

α ∈ A. Therefore, (x, y) ∈ G+ (fα) for any α ∈ A, and so (x, y) ∈
⋂

α∈AG+ (fα).
⊃:
Take any (x, y) ∈

⋂
α∈AG+ (fα). We have (x, y) ∈ G+ (fα) for any α ∈ A, i.e. y ≥ fα (x) for

any α ∈ A. Therefore, y is an upper bound of
{
fα (x) : α ∈ A

}
, and so y ≥ sup

{
fα (x) : α ∈ A

}
=(

sup {fα}α∈A
)
(x). Therefore (x, y) ∈ G+

(
sup {fα}α∈A

)
.

Then for each α ∈ A, because fα is a convex function, its epigraph G+ (fα) is a convex set. So
G+

(
sup {fα}α∈A

)
=

⋂
α∈AG+ (fα) is also convex, and therefore sup {fα} is a convex function.

(2) can be proved symmetrically.

The proposition implies as a special case that max {f, g} is a convex function if f and g are
both convex, and min {f, g} is a concave function if f and g are both concave.

Because linear functions are both convex and concave, another important special case of the
proposition above is that the sup of linear functions is convex, and the inf of linear functions is
concave.

The next theorem provides a characterization of convexity/concavity of continuously differen-
tiable functions.

Theorem 2.7. Suppose the function f : S → R is a C1 function, where S is a convex and open set
in Rn.

(1) f is convex iff
f
(
x′
)
≥ f (x) +∇f (x) ·

(
x′ − x

)
for any x′, x ∈ S.

(2) f is concave iff
f
(
x′
)
≤ f (x) +∇f (x) ·

(
x′ − x

)
for any x′, x ∈ S.

(3) f is strictly convex iff

f
(
x′
)
> f (x) +∇f (x) ·

(
x′ − x

)
for any x′, x ∈ S with x′ ̸= x.

(4) f is strictly concave iff

f
(
x′
)
< f (x) +∇f (x) ·

(
x′ − x

)
for any x′, x ∈ S with x′ ̸= x.

The intuition of the theorem above is that the set{(
x′, y

)
∈ S × R : y = f (x) +∇f (x) ·

(
x′ − x

)}
is the hyperplane that is tangent to the graph of f at x. A convex/concave function should lie
above/below this tangent plane. See FMEA Theorem 2.4.1 for a proof.

The next theorem provides a characterization of convexity/concavity for twice continuously
differentiable functions using the Hessian matrix.
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Theorem 2.8. Suppose the function f : S → R is a C2 function, where S is a convex and open set
in Rn.

(1) f is convex iff its Hessian matrix H (x) is positive semi-definite for any x ∈ S.
(2) f is concave iff its Hessian matrix H (x) is negative semi-definite for any x ∈ S.
(3) f is strictly convex if its Hessian matrix H (x) is positive definite for any x ∈ S.
(4) f is strictly concave if its Hessian matrix H (x) is negative definite for any x ∈ S.

Let’s admit this result without a formal proof. However, we can obtain some intuition of this
theorem using Taylor’s expansion:

f (x+ h) = f (x) +∇f (x)h+
1

2
hTHf (x)h+ o

(
∥h∥2

)
When h is close to 0, the error term o

(
∥h∥2

)
is small compared to 1

2h
THf (x)h, and therefore

the sign of f (x+ h) −
(
f (x) +∇f (x)h

)
is determined by the sign of hTHf (x)h. If Hf (x) is

positive/negative definite, then hTHf (x)h is strictly positive/negative for any h ̸= 0, and therefore
f is convex/concave.

In the theorem above, notice that (3) and (4) only claim the ”if” direction is true. In fact, the
”only if” direction is not true. For example, consider the function f : R → R defined as f (x) = x4,
which is a strictly convex function. However, its Hessian H (x) = f ′′ (x) = 12x2 is not positive
definite when x = 0.

3 Quasi-convex and Quasi-concave Functions

Definition 3.1. Consider a function f : S → R, where S is a convex set in vector space V .
(1) The function f is a quasi-convex function iff

f
(
λx+ (1− λ) y

)
≤ max

{
f (x) , f (y)

}
for any x, y ∈ S and λ ∈ [0, 1].

(2) The function f is a quasi-concave function iff

f
(
λx+ (1− λ) y

)
≥ min

{
f (x) , f (y)

}
for any x, y ∈ S and λ ∈ [0, 1].

(3) The function f is a strictly quasi-convex function iff

f
(
λx+ (1− λ) y

)
< max

{
f (x) , f (y)

}
for any x, y ∈ S with x ̸= y and λ ∈ (0, 1).

(4) The function f is a strictly quasi-concave function iff

f
(
λx+ (1− λ) y

)
> min

{
f (x) , f (y)

}
for any x, y ∈ S with x ̸= y and λ ∈ (0, 1).

Compare the definition of quasi-convex functions with that of convex functions in the previous
section, clearly a convex function f is also quasi-convex, since

λf (x) + (1− λ) f (y) ≤ max
{
f (x) , f (y)

}
8



Similarly, concavity implies quasi-concavity, strict convexity implies strict quasi-convexity, and strict
concavity implies strict quasi-concavity.

Clearly, f is (strictly) quasi-convex iff −f is (strictly) quasi-concave.
For a function f : S → R, define the upper contour set of f with cutoff a as

C+ (f, a) :=
{
x ∈ S : f (x) ≥ a

}
and the lower contour set of f with cutoff a as

C− (f, a) :=
{
x ∈ S : f (x) ≤ a

}
The next result characterizes a quasi-concave/quasi-convex function using its upper/lower con-

tour set.

Proposition 3.2. Consider a function f : S → R, where S is a convex set in vector space V .
(1) f is quasi-concave iff its upper contour set C+ (f, a) is a convex set in V for any a ∈ R.
(2) f is quasi-convex iff its lower contour set C− (f, a) is a convex set in V for any a ∈ R.

Notice that the concept of upper/lower contour set is completely different from that of epi-
graph/subgraph. The upper/lower contour set is in the vector space V , but the epigraph/subgraph
is in the vector space V ×R. Using this characterization, it is not difficult to see that quasi-concavity
is essentially a single peak condition, and that quasi-convexity is essentially a single trough condi-
tion.

Proof. (1)
⇒:
Take any a ∈ R. WTS: C+ (f, a) is convex.
Take any x1, x2 ∈ C+ (f, a) and any λ ∈ [0, 1]. WTS: λx1 + (1− λ)x2 ∈ C+ (f, a).
By definition of C+ (f, a), we have f (x1) ≥ a and f (x2) ≥ a. Because f is quasi-concave, we

have
f
(
λx1 + (1− λ)x2

)
≥ min

{
f (x1) , f (x2)

}
≥ a

and so λx1 + (1− λ)x2 ∈ C+ (f, a).
⇐:
Take any x1, , x2 ∈ S and any λ ∈ [0, 1]. WTS: f

(
λx1 + (1− λ)x2

)
≥ min

{
f (x1) , f (x2)

}
.

Because f (x1) ≥ min
{
f (x1) , f (x2)

}
and f (x2) ≥ min

{
f (x1) , f (x2)

}
, we have x1, x2 ∈

C+
(
f,min

{
f (x1) , f (x2)

})
. Because C+

(
f,min

{
f (x1) , f (x2)

})
is convex, we have λx1+(1− λ)x2 ∈

C+
(
f,min

{
f (x1) , f (x2)

})
, which by definition implies

f
(
λx1 + (1− λ)x2

)
≥ min

{
f (x1) , f (x2)

}
(2) can be proved symmetrically.

In the proof above, we can also show (2) using the fact that f is quasi-convex iff −f is quasi-
concave, and the lower contour set C− (f, a) is the same as the upper contour set C+ (−f,−a). This
alternative proof is left as an exercise.

The next result states that a weakly increasing transformation of a quasi-convex/quasi-concave
function is still quasi-convex/quasi-concave.

Proposition 3.3. Consider a function f : S → R, where S is a convex set in vector space V .
(1) If f is quasi-convex and ϕ : R → R is weakly increasing, then ϕ ◦ f is quasi-convex.
(2) If f is quasi-concave and ϕ : R → R is weakly increasing, then ϕ ◦ f is quasi-concave.
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Proof. (1) Take any x1, , x2 ∈ S and any λ ∈ [0, 1]. WTS:

ϕ
(
f
(
λx1 + (1− λ)x2

))
≥ min

{
ϕ
(
f (x1)

)
, ϕ

(
f (x2)

)}
To see this,

ϕ
(
f
(
λx1 + (1− λ)x2

))
≥ ϕ

(
min

{
f (x1) , f (x2)

})
= min

{
ϕ
(
f (x1)

)
, ϕ

(
f (x2)

)}
(2) can be shown symmetrically.

A straightforward corollary of the proposition above is: (3) a weakly decreasing transformation
of a quasi-convex function is quasi-concave, and (4) a weakly decreasing transformation of a quasi-
concave function is quasi-convex. To see (3), suppose f is quasi-convex and ϕ is weakly decreasing,
then −ϕ is weakly increasing. By (1), we have (−ϕ) ◦ f is quasi-convex, and so ϕ ◦ f = − (−ϕ) ◦ f
is quasi-concave. (4) can be shown symmetrically.

Although quasi-convexity/quasi-concavity is preserved under increasing transformations, the
sum of two quasi-convex/quasi-concave functions may no longer be quasi-convex/quasi-concave.
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