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7 Homogeneous Functions 24

In this lecture, we quickly review some important concepts in multivariate calculus, skipping
the proofs of many of the results. You may refer to Rudin’s Chapter 5 and 9 for derivatives, and
Chapter 4 of FMEA for integrals.

Unless stated otherwise explicitly, we use the Euclidean distance d2 in Rk by default when
talking about openness, closedness, compactness, limit, and continuity. Also, the product of two
vectors in Rk is the dot product, and the norm ∥·∥ of a vector is the Euclidean norm, or L2 norm.

1 Derivatives in one dimension

1.1 Definition

Definition 1.1. Let A ⊂ R, and x0 ∈ A ∩ A′. A function f : A → R is said to be differentiable
at x0 iff the limit

lim
x→x0

f(x)− f(x0)

x− x0

exists. In that case, define the derivative of f at x0 as the limit above, denoted as f ′ (x0).
A function f : A → R is said to be differentiable iff A ⊂ A′ and f is differentiable at any

x0 ∈ A.
Let Â be the set of points in A ∩ A′ at which f is differentiable. Then the function f ′ : Â → R

is called the derivative (function) of f .

Example 1.2. A constant function over an interval f : I → R is differentiable with f ′ = 0. The
identity function Id over R is differentiable with Id′(x) = 1 for all x ∈ R. The square root is
differentiable at every x > 0; to see it, observe that :

√
x+ h−

√
x

h
=

√
x+ h−

√
x

x+ h− x
=

1√
x+ h+

√
x

and :

lim
h→0

1√
x+ h+

√
x
=

1

2
√
x

Observe that we can give an equivalent definition of the derivative using a change of variable :

f ′(x0) = lim
h→0

f (x0 + h)− f (x0)

h

As clearly x0 + h −−−→
h→0

x0. We will use both definitions alternatively. The first one was chosen in

the definition above because it provides more intuition but the second one is often more convenient
to manipulate.

Clearly, if a function f is differentiable at x, then it is continuous at x. This is because

lim
x′→x

[
f
(
x′
)
− f (x)

]
= lim

x′→x

[
f
(
x′
)
− f (x)

x′ − x
·
(
x′ − x

)]

= lim
x′→x

[
f
(
x′
)
− f (x)

x′ − x

]
· lim
x′→x

[
x′ − x

]
= f ′ (x) · 0 = 0
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Theorem 1.3. If f : A → R is differentiable at x ∈ A, then it is continuous at x.

A function continuous at x may fail to be differentiable at x, since the function may have a kink
point. In fact, a function can be continuous everywhere, but not differentiable at a single point (e.g.
Weierstrass function).

Derivatives of some commonly used functions:

(xα)′ = αxα−1

(lnx)′ = 1/x

(ex)′ = ex

(sinx)′ = cosx

Be aware that the formula (xα)′ = αxα−1 does not work at x = 0 if α ≤ 1.

Because a derivative is essentially the limit of the slope function f(x+h)−f(x)
h when the deviation

h tends to 0, it inherits the properties of limits of functions. Especially, if f and g are both
differentiable at x, then f + g is also differentiable at x, and (f + g)′ (x) = f ′ (x) + g′ (x). This is
because

(f + g)′ (x) = lim
h→0

(f + g) (x+ h)− (f + g) (x)

h

= lim
h→0

f (x+ h) + g (x+ h)− f (x)− g (x)

h

= lim
h→0

[
f (x+ h)− f (x)

h
+

g (x+ h)− g (x)

h

]
= lim

h→0

f (x+ h)− f (x)

h
+ lim

h→0

g (x+ h)− g (x)

h

= f ′ (x) + g′ (x)

Notice that the second last equality uses the property of limits of functions:

lim
x→x0

[
s (x) + t (x)

]
= lim

x→x0

s (x) + lim
x→x0

t (x)

Also, it can be shown that

(λf)′ = λf ′

(fg)′ = f ′g + fg′(
f/g

)′
=

f ′g − fg′

g2

1.2 First order expansions and affine approximations

To give some interpretation for the concept of derivatives, we introduce first order expansions.

Definition 1.4. Let f : A → R and x0 ∈ A ∩ A′. We say that f admits a first order expansion
around x if there exists a, b ∈ R and a function ε : A → R such that :

∀x ∈ A, f(x) = a+ b(x− x0) + (x− x0)ε(x)

and lim
x→x0

ε(x) = 0

We now give a theorem relating first order expansions and derivatives
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Theorem 1.5. Let f : A → R and x0 ∈ A ∩A′. The following are equivalent :

(i) f is differentiable at x0

(ii) f has a first order expansion at x0

Furthermore the coefficients of the first order expansion when they exist are a = f(x0), b = f ′(x0).

Proof. First assume that f is differentiable at x0. Define :

ε(x) :=

{
f(x)−f(x0)

x−x0
if x ̸= x0

0 if x = x0

ε goes to zero as x goes to x0 and we have by construction :

∀x ∈ A, f(x) = f(x0) + f ′(x0)(x− x0) + (x− x0)ε(x)

Now assume conversely that f has a first order expansion at x0, i.e

∀x ∈ A, f(x) = a+ b(x− x0) + (x− x0)ε(x)

Since x0 ∈ A, this implies in particular f(x0) = a. Hence for x ∈ A \ {x0}, we can write :

f(x)− f(x0)

x− x0
=

f(x)− a

x− x0
= b+ ε(x) −−−→

x→x0

b

Hence f ′(x0) = b.

The function x 7→ f(x0)+(x−x0)f
′(x0) is called the affine approximation of f at x0. The affine

approximation has a geometric interpretation : it is the tangent of the curve of f at x0.

1.3 L’Hospital Rule

Define the extended real line R̄ := R∪{+∞,−∞}, where +∞ and −∞ are two abstract objects
that are not in R. Extend the order ≤ s.t. +∞> a and −∞ < a for any a ∈ R. Note that

(
R̄,≤

)
is a totally ordered set, but R̄ is not a metric space because the distance between ±∞ and real
numbers cannot be well defined, since the distance between two points in a metric space cannot be
+∞.

It is often useful to abuse the notation lim to allow divergence to +∞ or −∞. For example, the
notation

lim
x→a

f (x) = −∞

means that ∀ M ∈ R, ∃ δ > 0 s.t. f (x) < M for any x ∈ Bδ (a). In this case, we say that f (x)
diverges to −∞ as x converges to a ∈ R. In this case, we usually don’t say that f (x) converges
to −∞, because this does not fit in our definition of convergence to a limit, since the object −∞ is
not even in the metric space (R, d2).

We also allow the argument x to diverge to +∞ or −∞. For example, the notation

lim
x→−∞

f (x) = +∞

means that ∀ M ∈ R, ∃ N ∈ R s.t. f (x) > M for any x < N . In this case, we say that f (x)
diverges to −∞ as x diverges to +∞.

Using mean value theorem, it is not difficult to obtain the following result, which is known as
L’Hospital rule.
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Theorem 1.6 (L’Hospital Rule). Let −∞ ≤ a < b ≤ +∞, and f : (a, b) → R and g : (a, b) →
R\ {0} are differentiable in (a, b). If limx→a f (x) and limx→a g (x) are both 0 or ±∞, and limx→a f

′ (x) /g′ (x)
has a finite value or is ±∞, then

lim
x→a

f (x)

g (x)
= lim

x→a

f ′ (x)

g′ (x)

The statement is also true for x → b.

See Rudin’s Theorem 5.13 for a proof.
L’Hospital rule is particularly useful in obtaining the limit of some particular expression. For

example, it might seem difficult to determine the behavior of the function (lnx) /
√
x when x diverges

to +∞, because both the numerator and the denominator diverge to +∞. However, because

(lnx)′(√
x
)′ = 1

x
1

2
√
x

=
2√
x
→ 0

as x → +∞, we have limx→+∞ (lnx) /
√
x = 0 by L’Hospital rule.

According to the theorem, L’Hospital rule applies to functions with the form 0/0 or ∞/∞, i.e.
both the numerator and the denominator converges/diverges to 0 or ±∞. When a function does
not have this form, it must be transformed to this form before L’Hospital rule can be applied. For
example, consider the limit limx→+∞

(
1 + x−1

)x
. It does not have the form 0/0 or ∞/∞, but its

log

ln
(
1 + x−1

)x
= x ln

(
1 + x−1

)
=

ln
(
1 + x−1

)
x−1

takes the form 0/0, to which L’Hospital rule can be applied. This is left as an exercise.

1.4 Mean Value Theorem

Mean value theorem is an important result that has many useful implications.

Theorem 1.7 (Mean Value Theorem). Let f : [a, b] → R, differentiable on (a, b), and continuous
on [a, b]. Then there exists x ∈ (a, b) s.t.

f ′ (x) =
f (b)− f (a)

b− a

Notice that f(b)−f(a)
b−a is the slope of the line connecting

(
a, f (a)

)
and

(
b, f (b)

)
, the two end

points of the graph of f .

Proof. First, let’s consider the special case in which f (a) = f (b), and we want to find x ∈ (a, b)
s.t. f ′ (x) = 0.

Because [a, b] is compact and f is continuous on [a, b], the function f has a maximum and a
minimum. Also, there must exist x ∈ (a, b) s.t. f achieves its maximum or minimum at x. I want
to show that f ′ (x) = 0.

Suppose f achieves its maximum at x ∈ (a, b). Arbitrarily take a sequence (xn) convergent to x
s.t. xn < x for any n. Then we have

f ′ (x) = lim
x̃→x

f (x̃)− f (x)

x̃− x
= lim

n→∞

f (xn)− f (x)

xn − x
≥ 0

where the last inequality is because f (xn)− f (x) ≤ 0, xn − x < 0, and ≤ is preserved in the limit.
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Arbitrarily take a sequence
(
x′n
)
convergent to x s.t. x′n > x for any n. Then we have

f ′ (x) = lim
x̃→x

f (x̃)− f (x)

x̃− x
= lim

n→∞

f
(
x′n
)
− f (x)

x′n − x
≤ 0

Therefore, we must have f ′ (x) = 0 if f achieves its maximum at x ∈ (a, b). Symmetrically, we
can show that f ′ (x) = 0 if f achieves its minimum at x ∈ (a, b). So we have proved the special case
of the theorem where f (a) = f (b).

If f (a) and f (b) are not necessarily equal, we can subtract the linear trend of f and define a
new function g : [a, b] → R as

g (x) := f (x)− f (b)− f (a)

b− a
x

By definition, we have g (a) = g (b). Applying the special case we have proved, we can find
x∗ ∈ (a, b) s.t. g′ (x∗) = 0. Because

g′ (x) = f ′ (x)− f (b)− f (a)

b− a

for any x ∈ (a, b), we have

f ′ (x∗) = f (b)− f (a)

b− a

One implication of mean value theorem is: if f ′ > 0 on (a, b), then f is strictly increasing on
(a, b). To see this, take any x1, x2 ∈ (a, b) s.t. x1 < x2. By mean value theorem, there exists
x ∈ (x1, x2) s.t.

f ′ (x) =
f (x2)− f (x1)

x2 − x1

Therefore, f (x2) − f (x1) = f ′ (x) · (x2 − x1) > 0. Similarly, if f ′ < 0 on (a, b), then f is strictly
decreasing on (a, b). If we have f ′ ≥ 0 (≤ 0), then f is weakly increasing (decreasing) on (a, b).

Finally, here is a similar theorem that does not require differentiability.

Theorem 1.8 (Intermediate Value Theorem). Let f : [a, b] → R continuous and u is a number
between f(a) and f(b), then there exists c ∈ [a, b] s.t. u = f(c).

2 Derivatives in higher dimensions

2.1 Total derivatives

Now we generalize the notion of derivatives to multivariate functions.

Definition 2.1. Let A ⊂ Rn and x ∈ int (A). A function f : A → Rm is said to be differentiable
at x iff ∃ an m× n real matrix C s.t.

lim
h→0

∥∥f (x+ h)− f (x)− Ch
∥∥

∥h∥
= 0

In this case, define the (total) derivative of f at x as the matrix C, denoted as f ′ (x), or Df (x).
A function f : A → R is said to be differentiable iff A is open and f is differentiable at any

x ∈ A.
Let A1 ⊂ int (A) be the set of points at which f is differentiable. Then the function f ′ : A1 →

Rmn is called the derivative (function) of f .
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It can be shown that the real matrix C in the definition above is unique, if exists. See Rudin’s
Theorem 9.12 for a proof. Therefore, it is without ambiguity to talk about ”the” derivative and to
use the notation f ′ (x) or Df (x).

According to the definition, the derivative of function f from a set in Rn to Rm is an m × n
matrix C. This matrix C should be interpreted as a linear mapping from Rn to Rm, i.e. a function
that maps h ∈ Rn to Ch ∈ Rm. By definition, the matrix C is the derivative of f iff the linear
function f (x)+Ch of h approximates f (x+ h) well when h ∈ Rn is close to 0, in the sense that the
approximation error is o

(
∥h∥
)
. If we consider h as the deviation of x′ from x, clearly the function

f (x) + f ′ (x)
(
x′ − x

)
in x′ is the linear approximation of f

(
x′
)
in the neighborhood of x.

Because the m × n real matrix C can also be viewed as an mn-dimensional real vector, the
codomain of the derivative function f ′ can be viewed as Rmn.

For a real-valued function f from A ⊂ Rn to R, its derivative f ′ (x) at x ∈ int (A) reduces to
a 1 × n row vector. In this case, the derivative is also called the gradient of f at x, sometimes
denoted as ∇f (x), which is essentially the same as f ′ (x) or Df (x).

Clearly, if a function f from A ⊂ Rn to Rm is differentiable at x ∈ int (A), then it is continuous
at x. To see this, by triangle inequality of ∥·∥,

0 ≤
∥∥∥f (x′)− f (x)

∥∥∥ ≤
∥∥∥f (x′)− f (x)− f ′ (x)

(
x′ − x

)∥∥∥+ ∥∥∥f ′ (x)
(
x′ − x

)∥∥∥
Because the first term

∥∥∥f (x′)− f (x)− f ′ (x)
(
x′ − x

)∥∥∥ =

∥∥∥f (x′)− f (x)− f ′ (x)
(
x′ − x

)∥∥∥
∥x′ − x∥

∥∥x′ − x
∥∥

→ 0 · 0 = 0

as x′ → x, and the second term∥∥∥f ′ (x)
(
x′ − x

)∥∥∥→
∥∥f ′ (x) (x− x)

∥∥ = 0

as x′ → x, we know that
∥∥∥f (x′)− f (x)

∥∥∥→ 0 as x′ → x. Therefore, f is continuous at x.

If two functions f and g from A ⊂ Rn to Rm are both differentiable at x ∈ int (A), then the
function f : A → Rm is also differentiable at x, and furthermore we have (f + g)′ (x) = f ′ (x)+g′ (x).
To see this, observe that

0 ≤

∥∥∥(f + g) (x+ h)− (f + g) (x)−
(
f ′ (x) + g′ (x)

)
h
∥∥∥

∥h∥

=

∥∥f (x+ h)− f (x)− f ′ (x)h+ g (x+ h)− g (x)− g′ (x)h
∥∥

∥h∥

≤
∥∥f (x+ h)− f (x)− f ′ (x)h

∥∥
∥h∥

+

∥∥g (x+ h)− g (x)− g′ (x)h
∥∥

∥h∥

Also, we have
∥∥f (x+ h)− f (x)− f ′ (x)h

∥∥ / ∥h∥ → 0 and
∥∥g (x+ h)− g (x)− g′ (x)h

∥∥ / ∥h∥ →
0 as h → 0, by definition of f ′ (x) and g′ (x). Therefore,

lim
h→0

∥∥∥(f + g) (x+ h)− (f + g) (x)−
(
f ′ (x) + g′ (x)

)
h
∥∥∥

∥h∥
= 0
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which means the m× n matrix f ′ (x) + g′ (x) satisfies the definition of (f + g)′ (x).
Similarly, we can show (λf)′ = λf ′. Therefore, taking derivative is a linear operator, i.e.

(λ1f1 + λ2f2)
′ (x) = λ1f

′
1 (x) + λ2f

′
2 (x)

For a function f from A ⊂ Rn to Rm, each coordinate i ∈ {1, . . . ,m} of f can be regarded as
a function fi from A to R. By definition, it is straightforward to show that f is differentiable at
x ∈ int (A) iff fi is differentiable at x for each i, and furthermore we have

f ′ (x) =


∇f1 (x)
∇f2 (x)

...
∇fm (x)


2.2 Partial Derivatives

Definition 2.2. Let A ⊂ Rn and x ∈ int (A). For a function f : A → Rm, its partial derivative
of the i-th coordinate w.r.t. the j-th argument at x ∈ A is

∂fi
∂xj

(x) :=
d

dt
fi
(
x+ tej

)∣∣∣∣
t=0

if the right-hand side derivative exists.
The vector ej above is the j-th canonical basis of Rn, i.e. ej := (0, . . . , 1, . . . , 0).

In the expression d
dtfi

(
x+ tej

)∣∣∣
t=0

, we fix x and consider fi
(
x+ tej

)
as a single variable function

in t, then take derivative of this single variable function, and finally evaluate the derivative at t = 0.
In other words, the definition of this expression is

d

dt
fi
(
x+ tej

)∣∣∣∣
t=0

:= g′ (0)

where g (t) := fi
(
x+ tej

)
.

The vector x + tej is a deviation from x only in the j-th argument. Therefore, intuitively, the

partial derivative ∂fi
∂xj

(x) measures the sensitivity of the i-th coordinate fi of the function f w.r.t.

the j-th argument xj .

Notice that the notation ∂fi
∂xj

stands for a function from the set of points at which this partial

derivative exists to R, and it should be considered as an inseparable notation.
The next Theorem reveals the relation between the total derivative and the partial derivatives.

Namely, the total derivative is a matrix that collects all partial derivatives as its entries.

Theorem 2.3. Let A ⊂ Rn and x ∈ int (A). If function f : A → Rm is differentiable at x, then
∂fi
∂xj

(x) exists for any (i, j) ∈ {1, . . .m} × {1, . . . , n}, and furthermore we have

f ′ (x) =


∂f1
∂x1

(x) ∂f1
∂x2

(x) · · · ∂f1
∂xn

(x)
∂f2
∂x1

(x) ∂f2
∂x2

(x) · · · ∂f2
∂xn

(x)
...

...
...

∂fm
∂x1

(x) ∂fm
∂x2

(x) · · · ∂fm
∂xn

(x)


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Proof. Let
(
f ′ (x)

)
i
be the i-th row of the matrix f ′ (x), and

(
f ′ (x)

)
ij
be the (i, j)-th entry of f ′ (x).

WTS: ∂fi
∂xj

(x) exists and ∂fi
∂xj

(x) =
(
f ′ (x)

)
ij
for any (i, j) ∈ {1, . . .m} × {1, . . . , n}.

Take any (i, j) ∈ {1, . . .m} × {1, . . . , n}. By definition of f ′ (x), we have

lim
h→0

∥∥f (x+ h)− f (x)− f ′ (x)h
∥∥

∥h∥
= 0

Because
0 ≤

∣∣∣fi (x+ h)− fi (x)−
(
f ′ (x)

)
i
h
∣∣∣ ≤ ∥∥f (x+ h)− f (x)− f ′ (x)h

∥∥
we have

lim
h→0

∣∣∣fi (x+ h)− fi (x)−
(
f ′ (x)

)
i
h
∣∣∣

∥h∥
= 0

Because tej → 0 as t → 0, we have

lim
t→0

∣∣∣fi (x+ tej
)
− fi (x)−

(
f ′ (x)

)
i
· tej

∣∣∣∥∥tej∥∥ = 0

i.e.

lim
t→0

∣∣∣∣∣∣
fi
(
x+ tej

)
− fi (x)−

(
f ′ (x)

)
ij
· t

t

∣∣∣∣∣∣ = 0

This implies

lim
t→0

fi
(
x+ tej

)
− fi (x)

t
=
(
f ′ (x)

)
ij

and LHS is exactly the definition of ∂fi
∂xj

(x).

Notice that the theorem above only states that existence of the total derivative implies the
existence of all partial derivatives. The reverse is not true, since we can find a function f s.t.
∂fi
∂xj

(x) exists for all (i, j) ∈ {1, . . .m} × {1, . . . , n}, but f is not differentiable at x, i.e. its total

derivative does not exist. In fact, f may even be discontinuous at x. See the example below.

Example 2.4. Consider the function f : R2 → R defined as

f (x, y) :=

{
x2y

x4+y2
, if (x, y) ̸= (0, 0)

0, if (x, y) = (0, 0)

By definition of partial derivatives, we have

∂f

∂x
(0, 0) =

d

dt
f (t, 0)

∣∣∣∣
t=0

= lim
t→0

f (t, 0)− f (0, 0)

t− 0

= lim
t→0

0− 0

t− 0
= 0

and

∂f

∂y
(0, 0) =

d

dt
f (0, t)

∣∣∣∣
t=0

= lim
t→0

f (0, t)− f (0, 0)

t− 0

= lim
t→0

0− 0

t− 0
= 0

9



So both of the partial derivatives of f exist.
However, f is not differentiable at (0, 0). In fact, f is not even continuous at (0, 0). To see

this, notice that f constantly take the value 1/2 along the path y = x2 except for at the point (0, 0),
where the f takes the value 0.

As is shown in the example above, the existence of ∂fi
∂xj

(x) for all (i, j) does not imply differen-

tiability of f at x. However, if for each (i, j), the partial ∂fi∂xj
(x) exists not only at x, but also on

an open ball around x, and ∂fi
∂xj

(x) is continuous at x, then f is differentiable at x. This result is

formulated by following theorem.

Theorem 2.5. Let A ⊂ Rn, x ∈ int (A), and function f : A → Rm. Then f is C1 at x iff ∂fi
∂xj

(x)

exists on an open ball around x and is continuous at x for any (i, j) ∈ {1, . . .m} × {1, . . . , n}.

The ”only if” part is trivial by Theorem 2.3. The ”if” part is essentially about differentiability,
since once we have shown f is differentiable at x, it is trivial to show f ′ (x) is continuous at x
because each partial is continuous. See Rudin’s Theorem 9.21 for a proof.

It is typically difficult to find the total derivative of a function f , since we need to find a
m× n matrix that satisfies the limit condition specified by the definition. However, the mn partial
derivatives are much easier to find, since they are essentially derivatives of single variable derivatives.
Therefore, to find the total derivative of a function at x, we usually don’t directly work with the
definition of total derivatives. Instead, we look at all partial derivatives of f and see if all of them
exist in an open ball around x and are continuous at x. If yes, then by the theorem above we know
that the total derivative exists at x, and is exactly the matrix of all partial derivatives at x.

We can generalize the mean value theorem to functions mapping from A ⊂ Rn to R.

Theorem 2.6. Let f : A ⊂ Rn is C1 in an open set in A which contains [x,y] (xi < yi, ∀i =
1, 2, ..., n). Then there exists a point w in (x,y) (i.e. xi < wi < yi,∀i = 1, 2, ..., n) s.t.

f(x)− f(y) = ∇f(w) · (x− y)

2.3 Directional Derivatives*

The concept of directional derivatives is a generalization of partial derivatives.

Definition 2.7. Let A ⊂ Rn and x ∈ int (A). For a function f : A → Rm and a vector z ∈ Rn

with ∥z∥ = 1, the directional derivative of f along the vector z ∈ Rn at x ∈ A is

f ′
z (x) :=

d

dt
f (x+ tz)

∣∣∣∣
t=0

=



d
dtf1 (x+ tz)

∣∣∣
t=0

d
dtf2 (x+ tz)

∣∣∣
t=0

...
d
dtfm (x+ tz)

∣∣∣
t=0


if the right-hand side derivative exists.

If we let z = ej , clearly by definition, we have

(fi)
′
ej
(x) =

∂fi
∂xj

(x)

10



i.e. the directional derivative of fi along the vector ej is exactly the partial derivative of fi w.r.t.
xj .

If f is differentiable at x, then we know that all of its directional derivatives exist, and further-
more we have f ′

z (x) = f ′ (x) ·z, where z ∈ Rn is considered as a column vector. To see this, consider
the function g (t) := x+ tz, we have f (x+ tz) = (f ◦ g) (t). Then we have

f ′
z (x) =

d

dt
f (x+ tz)

∣∣∣∣
t=0

= (f ◦ g)′ (0)

= f ′ (g (0)) · g′ (0) = f ′ (x) · z

where the third equality above is because of the chain rule.
A function may not be differentiable at x even if its directional derivative at x exists for all

directions. In fact, the function may even be discontinuous at x. Again consider the function
f : R2 → R in Example 2.4

f (x, y) :=

{
x2y

x4+y2
, if (x, y) ̸= (0, 0)

0, if (x, y) = (0, 0)

For any direction z ∈ R2 with ∥z∥ = 1, we have

f ′
z (0, 0) =

d

dt
f (tz1, tz2)

∣∣∣∣
t=0

= lim
h→0

f (hz1, hz2)− f (0, 0)

h

= lim
h→0

h2z21 ·hz2
h4z41+h2z22

− 0

h
= lim

h→0

z21z2
h2z41 + z22

If z2 = 0, then f ′
z (0, 0) = limh→0 0 = 0. If z2 ̸= 0, we have f ′

z (0, 0) = z21/z2. Therefore, the
directional derivative f ′

z (0, 0) exists for all direction z, but f is not even continuous at (0, 0).
Consider a function f from A ⊂ Rn to R and x ∈ int (A), the gradient ∇f (x) can be interpreted

as the direction in which f increases the fastest at x. This is formulated in the proposition below.

Proposition 2.8. Let f be a function from A ⊂ Rn to R that is differentiable at x ∈ int (A),

and ∇f (x) ̸= 0. Then the directional derivative f ′
z (x) is maximized when z = ∇f(x)

∥∇f(x)∥ , and the

maximized directional derivative is
∥∥∇f (x)

∥∥.
The proof is a simple application of the dot product definition of directional derivatives.

2.4 Chain Rule

Proposition 2.9 (Chain Rule). Let S be a subset of R, and f : S → R. Let T be a set s.t.
f (S) ⊂ T ⊂ R, and g : T → R. If f is differentiable at x, and g is differentiable at f (R) is
differentiable at x, and we have

(g ◦ f)′ (x) = g′
(
f (x)

)
· f ′ (x)

The chain rule for single variable functions to can be generalized to multivariate functions. See
Rudin’s Theorem 9.15 for a proof.

Proposition 2.10 (Chain Rule). Let S ∈ Rn, x ∈ int (S), and f : S → Rm. Let T be s.t.
f (S) ⊂ T ⊂ Rm and f (x) ∈ int (T ), and let g : T → Rk. If f is differentiable at x, and g is
differentiable at f (x), then g ◦ f : S → Rk is differentiable at x. Furthermore, we have

(g ◦ f)′ (x) = g′
(
f (x)

)
· f ′ (x)

11



In the equation above, the · on the right-hand side is the matrix multiplication. Because g′
(
f (x)

)
is an k×m matrix, and f ′ (x) is an m×n matrix, their product g′

(
f (x)

)
· f ′ (x) is a k×n matrix,

which is exactly the size (g ◦ f)′ (x) should have.
By Theorem 2.3, we can rewrite the chain rule in terms of partial derivatives to obtain more

intuitions. In the equation (g ◦ f)′ (x) = g′
(
f (x)

)
· f ′ (x), the equality between the (i, j)-th entries

of the matrices on two sides is

∂ (g ◦ f)i
∂xj

(x) =
m∑
l=1

[
∂gi
∂yl

(
f (x)

)
· ∂fl
∂xj

(x)

]

for each (i, j) ∈ {1, . . . , k} × {1, . . . , n}. Intuitively, the partial
∂(g◦f)i
∂xj

measures how a change in

xj will lead to a change in
[
g
(
f (x)

)]
i
. We know that a change in xj may lead to a change in[

g
(
f (x)

)]
i
through f1 (x), f2 (x), ..., and fm (x), and so the total effect

∂(g◦f)i
∂xj

should be the sum

of the m effects, each of which works through one fl (x). For each l ∈ {1, . . . ,m}, the partial
∂fl
∂xj

(x) measures how sensitive fl (x) is w.r.t. xj , and the partial ∂gi
∂yl

(
f (x)

)
measures how sensitive[

g
(
f (x)

)]
i
is w.r.t. fl (x). Therefore the product ∂gi

∂yl

(
f (x)

)
· ∂fl
∂xj

(x) measures how a change in

xj will lead to a change in
[
g
(
f (x)

)]
i
through fl (x). Summing up all of the m effects, we have

∂(g◦f)i
∂xj

(x) =
∑m

l=1

[
∂gi
∂yl

(
f (x)

)
· ∂fl
∂xj

(x)
]
.

3 Higher Order Derivatives and Taylor Expansion

3.1 Second Order Derivatives of f : A ⊂ Rn → R

As a special case of Theorem 2.3 when m = 1, for a function f from A ⊂ Rn to R, we know that
its gradient at x ∈ int (A) is equal to the vector of partial derivatives, i.e.

∇f (x) =

(
∂f

∂x1
(x) ,

∂f

∂x2
(x) , . . . ,

∂f

∂xn
(x)

)
The second derivative of the real-valued function f at x is also known as the Hessian matrix of
f at x, denoted as Hf (x):

Hf (x) : = f ′′ (x) = (∇f)′ (x) =



(
∇ ∂f

∂x1

)
(x)(

∇ ∂f
∂x2

)
(x)

...(
∇ ∂f

∂xn

)
(x)



=



∂
(

∂f
∂x1

)
∂x1

(x)
∂
(

∂f
∂x1

)
∂x2

(x) · · ·
∂
(

∂f
∂x1

)
∂xn

(x)

∂
(

∂f
∂x2

)
∂x1

(x)
∂
(

∂f
∂x2

)
∂x2

(x) · · ·
∂
(

∂f
∂x2

)
∂xn

(x)
...

...
...

∂
(

∂f
∂xn

)
∂x1

(x)
∂
(

∂f
∂xn

)
∂x2

(x) · · ·
∂
(

∂f
∂xn

)
∂xn

(x)


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Notice that in the expressions above, the notation
(
∇ ∂f

∂xi

)
(x) stands for the gradient of the

function ∂f
∂xi

at x. The notation
∂
(

∂f
∂xi

)
∂xj

(x) stands for the partial derivative of the function ∂f
∂xi

at

x w.r.t. the j-th argument, which is usually referred to as a cross partial at x. The notation for

the cross partial
∂
(

∂f
∂xi

)
∂xj

is usually simplified as ∂2f
∂xj∂xi

.

The cross partial

∂2f

∂xj∂xi
(x) :=

∂
(

∂f
∂xi

)
∂xj

(x)

and the cross partial

∂2f

∂xi∂xj
(x) :=

∂
(

∂f
∂xj

)
∂xi

(x)

are conceptually very different when i ̸= j. However, they are equal if f is twice-differentiable at x,
and this result is usually known as Young’s theorem or Schwarz’s theorem.

Theorem 3.1 (Young; Schwarz). Let A ⊂ Rn and x ∈ int (A). If function f : A → R is C2 at x,

then for any i, j ∈ {1, . . . , n} both ∂2f
∂xj∂xi

(x) and ∂2f
∂xi∂xj

(x) exists and

∂2f

∂xj∂xi
(x) =

∂2f

∂xi∂xj
(x)

See Rudin’s Theorem 9.41 for a proof under a slightly different assumption.
By the theorem above, when f is twice-differentiable at x, the Hessian matrix of f at x

Hf (x) =



∂2f

(∂x1)
2 (x)

∂2f
∂x2∂x1

(x) · · · ∂2f
∂xn∂x1

(x)

∂2f
∂x1∂x2

(x) ∂2f

(∂x2)
2 (x) · · · ∂2f

∂xn∂x2
(x)

...
...

...
∂2f

∂x1∂xn
(x) ∂2f

∂x2∂xn
(x) · · · ∂2f

(∂xn)
2 (x)


is a symmetric matrix.

When f is not twice-differentiable at x, we don’t necessarily have ∂2f
∂xj∂xi

(x) = ∂2f
∂xi∂xj

(x) even

when both cross partials exist. See the example below.

Example 3.2. Consider the function f : R2 → R defined as

f (x, y) :=

 xy(x2−y2)
x2+y2

, if (x, y) ̸= (0, 0)

0, if (x, y) = (0, 0)

It can be verified that f is not C2 at (0, 0).
By definition of partial derivatives, we have

∂f

∂x
(0, 0) =

d

dt
f (t, 0)

∣∣∣∣
t=0

= lim
t→0

f (t, 0)− f (0, 0)

t− 0

= lim
t→0

0− 0

t− 0
= 0
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and at any (0, y) with y ̸= 0, we have

∂f

∂x
(0, y) =

d

dt
f (t, y)

∣∣∣∣
t=0

= lim
t→0

f (t, y)− f (0, y)

t− 0

= lim
t→0

ty(t2−y2)
t2+y2

− 0

t
= lim

t→0

y
(
t2 − y2

)
t2 + y2

= −y

and so ∂f
∂x (0, y) = −y for any y ∈ R. Therefore, we have

∂2f

∂y∂x
(0, 0) =

d

dt

(
∂f

∂x
(0, t)

)∣∣∣∣∣
t=0

=
d

dt
(−t)

∣∣∣∣
t=0

= −1

Similarly, we have

∂f

∂y
(0, 0) =

d

dt
f (0, t)

∣∣∣∣
t=0

= lim
t→0

f (0, t)− f (0, 0)

t− 0

= lim
t→0

0− 0

t− 0
= 0

and at any (x, 0) with x ̸= 0, we have

∂f

∂y
(x, 0) =

d

dt
f (x, t)

∣∣∣∣
t=0

= lim
t→0

f (x, t)− f (x, 0)

t− 0

= lim
t→0

xt(x2−t2)
x2+t2

− 0

t
= lim

t→0

x
(
x2 − t2

)
x2 + t2

= x

and so ∂f
∂y (0, y) = x for any y ∈ R. Therefore, we have

∂2f

∂x∂y
(0, 0) =

d

dt

(
∂f

∂y
(t, 0)

)∣∣∣∣∣
t=0

=
d

dt
(t)

∣∣∣∣
t=0

= 1

So we have
∂2f

∂y∂x
(0, 0) ̸= ∂2f

∂x∂y
(0, 0)

3.2 Ck functions

For a function f from A ⊂ Rn to Rm, the derivative f ′ itself is a function from A1 to Rmn, it makes
sense to talk about the derivative of f ′.

If f ′ is differentiable at x ∈ int (A1), we call the derivative of f ′ at x, an mn × n real matrix,
the second derivative of f at x, and denote it as f ′′ (x). In this case, we say that f is twice
differentiable at x. Let A2 ⊂ int (A1) be the set of points at which f ′ is differentiable, then the
derivative f ′′ is a function from A2 to Rmn2

. If f ′′ is differentiable at x ∈ int (A2), we call the
derivative of f ′′ at x, an mn2 × n real matrix, the third derivative of f at x, and denote it as
f ′′′ (x). In this case, we say that f is three times differentiable at x. Inductively, we can define
the k-th order derivative of f at x, an mnk−1 × n real matrix, and denote it as f (k) (x)1.

We say that f from A ⊂ Rn to Rm is k-th continuously differentiable at x iff x ∈ int (Ak)
and f (k) (x) is continuous at x, where Ak is the set of points at which f (k−1) is differentiable. In
this case, f is said to be Ck at x. We say that f is k-th continuously differentiable iff A is open
and f is k-th continuously differentiable at all x ∈ A. In this case, f is said to be Ck.

1The notation is not to be confused with that of the compound function when we talk about the Contraction
Mapping Theorem in the Real Analysis lecture.
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3.3 Taylor’s Theorem

Theorem 3.3 (Taylor). Let f : [a, b] → R be Cn−1 and f (n) (t) exists at every t ∈ (a, b). Let α and
β be distinct points in [a, b], and define

Pn−1 (t) := f (α) + f ′ (α) (t− α) +
f ′′ (α)

2
(t− α)2

+ · · ·+ f (n−1) (α)

(n− 1)!
(t− α)n−1

Then there exists x strictly between α and β s.t.

f (β) = Pn−1 (β) +
f (n) (x)

n!
(β − α)n

In the theorem, β is allowed to be greater or less than α. See Rudin’s Theorem 5.15 for a proof.
Notice that Taylor’s theorem reduces to the mean value theorem when n = 1, and so Taylor’s
theorem can be viewed as a generalization of the mean value theorem.

This theorem states that under some differentiability and continuity conditions, f (β) can be
approximated by the polynomial

Pn−1 (β) := f (α) + f ′ (α) (β − α) +
f ′′ (α)

2
(β − α)2

+ · · ·+ f (n−1) (α)

(n− 1)!
(β − α)n−1

and the error is f (n)(x)
n! (β − α)n. If we rewrite β as α + h, then f (α+ h) can be approximated by

the polynomial

f (α) + f ′ (α)h+
f ′′ (α)

2
h2 + · · ·+ f (n−1) (α)

(n− 1)!
hn−1

and the error is f (n)(x)
n! hn, where x is some point between x and x+ h.

If we further assume that f ∈ Cn, then f (n) is continuous at α, and thus

f (n)(x)
n! hn

hn−1
=

f (n) (x)

n!
h → f (n) (α)

n!
0 = 0

as h → 0, which means that the error is small compared to hn−1 as h tends to 0.
Conventionally, the notation o

(
f (t)

)
is used to denote any function g (t) s.t. limt→0 g (t) /f (t) =

02. So the error term is o
(
hn−1

)
. Therefore, Taylor’s theorem can be rewritten as

f (α+ h) = f (α) + f ′ (α)h+
f ′′ (α)

2
h2 + · · ·+ f (n−1) (α)

(n− 1)!
hn−1 + o

(
hn−1

)
when f is Cn, and this is sometimes known as the (n − 1)-th order Taylor expansion of f at
α. Notice that the correct interpretation of the equality above is

lim
h→0

f (α+ h)−
[
f (α) + f ′ (α)h+ f ′′(α)

2 h2 + · · ·+ f (n−1)(α)
(n−1)! hn−1

]
hn−1

= 0

2We sometimes also use the notation O
(
f (t)

)
to denote any function g (t) s.t. g (t) /f (t) converges to some

real number (may or may not be 0) as t → 0. Therefore, a o
(
f (t)

)
is also a O

(
f (t)

)
. The notation o

(
f (n)

)
and

O
(
f (n)

)
, where n ∈ N, are defined similarly, but the limit is taken as n → ∞.
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We can also write the (n− 1)th order Taylor approximation of f at α:

f (α+ h) ≈ f (α) + f ′ (α)h+
f ′′ (α)

2
h2 + · · ·+ f (n−1) (α)

(n− 1)!
hn−1

Now let’s state the (first and second order) Taylor’s theorem for multivariate functions without
proof.

Theorem 3.4 (Taylor). Let f be a function from A ⊂ Rn to R, and f is C2 at x ∈ int (A). Then
we have

f (x+ h) = f (x) +∇f (x)h+ o
(
∥h∥
)

If f is C3 at x, we have

f (x+ h) = f (x) +∇f (x)h+
1

2
hTHf (x)h+ o

(
∥h∥2

)
Recall that the correct interpretation of the two equations above is

lim
h→0

f (x+ h)−
[
f (x) +∇f (x)h

]
∥h∥

= 0

and

lim
h→0

f (x+ h)−
[
f (x) +∇f (x)h+ 1

2h
THf (x)h

]
∥h∥2

= 0

4 Log-linearization

In dynamic macro economics models, we sometimes use log-linearization to approximate a non-
linear dynamic system using a linear dynamic system. This invokes Taylor’s theorem, which tells
us how to construct linear approximations of (non-linear) functions, at least near some point x∗

(which is usually the steady state point of the system).
Consider a multivariate function f : A ⊂ Rn → R, we want to approximate it around point

x∗ = (x∗1, x
∗
2, ..., x

∗
n) s.t. x∗i ̸= 0, ∀i. For each variable xi, we define x̂i := ln(xi/x

∗
i ) to be its

log-deviation 3 when xi and x∗i have the same sign (which is reasonable when x is ”near” x∗).
Since xi = x∗i e

x̂i , we can rewrite f(x) = f(x1, x2, ..., xn) as a function h of x̂1, x̂2, ..., x̂n:

h(x̂1, x̂2, ..., x̂n) = f(x∗1e
x̂1 , x∗2e

x̂2 , ..., x∗ne
x̂n) = f(x)

Note that h(0) = f(x∗) and h′i(0) = f ′
i(x

∗)x∗i , ∀i = 1, 2, ..., n.
We then take a first order Taylor expansion of h around the point 0 (we replace ≈ with = in

this section, but keep in mind when involving Taylor expansion the equality is not exact and since
it is first-order the approximation works well only when x is close to x∗):

f(x) = h(x̂1, x̂2, ..., x̂n) = h(0) + h′1(0)x̂1 + h′2(0)x̂2 + ...+ h′n(0)x̂n

= f(x∗) + f ′
1(x

∗)x∗1x̂1 + f ′
2(x

∗)x∗2x̂2 + ...+ f ′
n(x

∗)x∗nx̂n

3The reason why we use log variables is that we can consider log-deviations as percentage deviations (divided by
100) (this is because ln(x∗

i + h) − ln(x∗
i ) = ln′(x∗

i )h + o(h) ≈ ln′(x∗
i )h = h

x∗
i
), so that the ”distances” of variables

in probably different absolute terms to some point are comparable to each other when we linearly approximate the
function at that point.
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The approximation above, in the form of f(x) = a0 +
∑n

i=1 aix̂i, is called the log-linear ap-
proximation of function f around point x∗.

Often, instead of log-linearizing a function, we want to log-linearize an equation (which is (a
part of) the characterization of a system at its steady state):

f(x) = f(x1, x2..., xn) = 0

around root x∗ = (x∗1, x
∗
2, ..., x

∗
n) satisfying f(x∗) = 0. In this case, we first write a log-linear

approximation of the LHS, f(x), then we set this log-linear approximation equal to zero. So we
have

f ′
1(x

∗)x∗1x̂1 + f ′
2(x

∗)x∗2x̂2 + ...+ f ′
n(x

∗)x∗nx̂n = 0

which, in the form of
∑n

i=1 bix̂i = 0, is called the log-linearization of equation f(x) = 0
around x∗ s.t. f(x∗) = 0.

The discussion below is devoted to showing how to perform log-linearization of equations (faster).

If f(x∗) ̸= 0, define ηi :=
f ′
i(x

∗)x∗
i

f(x∗) (i = 1, 2, ..., n) the elasticity of f w.r.t xi at x∗, we can
also write:

f(x) = f(x∗)[1 + η1x̂1 + η2x̂2...+ ηnx̂n]

and therefore
f(x)− f(x∗)

f(x∗)
= η1x̂1 + η2x̂2...+ ηnx̂n

Now we define the log-deviation of function f around some point x∗ = (x∗1, x
∗
2, ..., x

∗
n) s.t.

f(x∗) ̸= 0:

f̂(x) := ln(f(x)/f(x∗))

(when f(x) and f(x)∗ have the same sign). Notice that ln(f(x)/f(x∗)) ≈ f(x)−f(x∗)
f(x)∗ , we then

have
f̂(x) = η1x̂1 + η2x̂2...+ ηnx̂n

The following are the log-deviations of some simple functions (please verify by yourselves), which
are ”shortcuts” you might want to memorize (note here x, x1, x2 are scalars):

1. α̂x

2. x̂1 + x2 =
x∗
1

x∗
1+x∗

2
x̂1 +

x∗
2

x∗
1+x∗

2
x̂1

3. x̂1x2 = x̂1 + x̂2

4. x̂α = αx̂

5. t̂(x) = t′(x∗)x∗

t(x∗) x̂

6. ĉ = 0, where c is a constant

We can get the log-deviation for even more complicated functions by treating them as compound
functions and repeatedly applying these shortcuts. For example, consider the function

f(A,B,C,D) =
(1 + αC) (A+B)

Dα

17



we have

̂f(A,B,C,D) =

̂︷ ︸︸ ︷(
(1 + αC) (A+B)

Dα

)
=

̂︷ ︸︸ ︷
(1 + αC) (A+B)D−α

= ̂(1 + αC) + ̂(A+B) + D̂−α

=
1

1 + αC∗ 1̂ +
αC∗

1 + αC∗ (̂αC) +
A∗

A∗ +B∗ Â+
B∗

A∗ +B∗ B̂ − αD̂

=
αC∗

1 + αC∗

(
α̂+ Ĉ

)
+

A∗

A∗ +B∗ Â+
B∗

A∗ +B∗ B̂ − αD̂

=
αC∗

1 + αC∗ Ĉ +
A∗

A∗ +B∗ Â+
B∗

A∗ +B∗ B̂ − αD̂

Sometimes the function f(x) can be written in the form of f(x) = g(x)−l(x). Then the equation
f(x) = 0 can be written as g(x) = l(x). To log-linearize equation g(x) = h(x) around some x∗

satisfying g(x∗) = l(x∗), we can just derive the log-deviation ĝ(x) and ĥ(x) around x∗, and set
them equal to one another.

5 Implicit Function Theorem and Inverse Function Theorem

For a function f from A ⊂ Rn×Rm to Rk and a point (x0, y0) ∈ A, the Jacobian matrix f ′
x (x0, y0)

at (x0, y0) is a k×n matrix defined as the derivative of f (x, y0) viewed as a function of x, evaluated
at x = x0. Similarly, the Jacobian matrix f ′

y (x0, y0) at (x0, y0) is a k × m matrix defined as the
derivative of f (x0, y) viewed as a function of y, evaluated at y = y0.

Theorem 5.1 (Implicit Function). Let f be a function from A ⊂ Rn × Rm to Rm. Let (x0, y0) ∈
int (A) s.t. f (x0, y0) = 0. If f is C1 at (x0, y0) and the m × m Jacobian matrix f ′

y (x0, y0) is
invertible, then there exist an open ball Bx around x0 and an open ball By around y0 s.t. ∀ x ∈ Bx

there exists a unique y ∈ By s.t. f (x, y) = 0. Therefore, the equation f (x, y) = 0 implicitly defines
a function g : Bx → By with the property

f
(
x, g (x)

)
= 0

for any x ∈ Bx. Furthermore, we know that the function g is differentiable at any x ∈ Bx, and

g′ (x) = −
[
f ′
y

(
x, g (x)

)]−1
f ′
x

(
x, g (x)

)
Here let’s admit that the implicit function g is well-defined and is differentiable, and provide

some intuitions only for the derivative formula g′ (x) = −
[
f ′
y

(
x, g (x)

)]−1
f ′
x

(
x, g (x)

)
using chain

rule. See Rudin’s Theorem 9.28 for a complete proof.
Suppose that we can somehow show that there exists an open ball Bx around x0 s.t. ∀ x ∈ Bx

there exists a unique y ∈ By s.t. f (x, y) = 0. Then we define g : Bx → By as g (x) := y s.t.
f (x, y) = 0. Then we know that f

(
x, g (x)

)
= 0 for any x ∈ Bx. Suppose that we can somehow

show that g is differentiable at any x ∈ Bx. Then think of both sides of the equation f
(
x, g (x)

)
= 0

as a function in x and take derivative, and we should have

d

dx
f
(
x, g (x)

)
=

d

dx
0
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Clearly, the right-hand side of the equation above is 0. Consider the function h : Bx → Bx × By

defined as h (x) :=
(
x, g (x)

)
for any x ∈ Bx. Then we know that f

(
x, g (x)

)
= f

(
h (x)

)
, and

therefore the left-hand side

d

dx
f
(
x, g (x)

)
= f ′

x(x, g(x))In + f ′
y(x, g(x))g

′(x)

= f ′
x

(
x, g (x)

)
+ f ′

y

(
x, g (x)

)
g′ (x)

Therefore, we have f ′
x

(
x, g (x)

)
+ f ′

y

(
x, g (x)

)
g′ (x) = 0, i.e.

f ′
y

(
x, g (x)

)
g′ (x) = −f ′

x

(
x, g (x)

)
Because f ′

y (x0, y0) = f ′
y

(
x0, g (x0)

)
is invertible, we have det

(
f ′
y

(
x0, g (x0)

))
̸= 0. It can be

shown that det
(
f ′
y

(
x, g (x)

))
is continuous in x, and therefore we can set Bx to be small enough

s.t. det
(
f ′
y

(
x, g (x)

))
̸= 0 for any x ∈ Bx. Therefore, the matrix f ′

y

(
x, g (x)

)
is invertible for any

x ∈ Bx, and left-multiplying the equation above by
[
f ′
y

(
x, g (x)

)]−1
, and we have

g′ (x) = −
[
f ′
y

(
x, g (x)

)]−1
f ′
x

(
x, g (x)

)
The next theorem, often known as the inverse function theorem, is just a special case of the

implicit function theorem.

Theorem 5.2 (Inverse Function). Let f be a function from A ⊂ Rn to Rn. Let x0 ∈ int (A) and let
y0 := f (x0). If f is C1 at (x0, y0) and the derivative f ′ (x0) is invertible, then there exists an open
ball By around y0 and an open ball Bx s.t. ∀ y ∈ By there exists a unique x ∈ Bx s.t. f (x) = y.
Therefore, the equation f (x) = y implicitly defines a function g : By → Bx with the property

f
(
g (y)

)
= y

for any y ∈ By. Furthermore, the function g is differentiable at any y ∈ By, and we have

g′ (y) = f ′ (g (y))−1

To see why the inverse function theorem is a special case of the implicit function theorem, define

F (y, x) := y − f (x)

for any (y, x) ∈ Rn × A. Clearly, (y0, x0) ∈ int (Rn ×A) and F (y0, x0) = 0, and F is C1. Further-
more F ′

x (y0, x0) = −f ′ (x0) is invertible by assumption. Invoke the implicit function theorem for
function F , and we know that x is implicitly defined as a function g of y on an open ball By around
y0, with the property F

(
y, g (y)

)
= 0 for any y ∈ By.

Furthermore, the function g is differentiable at any y ∈ By, and

g′ (y) = −
[
F ′
x

(
y, g (y)

)]−1
F ′
y

(
y, g (y)

)
= −

[
−f ′ (g (y))]−1

· In = f ′ (g (y))−1

So we have the implicit function theorem.
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Again, we can obtain some intuitions of this result using chain rule. Think of both sides of the
equation f

(
g (y)

)
= y as a function in y and take derivative:

d

dy
f
(
g (y)

)
=

d

dy
y

f ′ (g (y)) · g′ (y) = In

Because f ′ (g (y)) is invertible when y = y0, and so we can set the open ball B to be small enough

s.t. f ′ (g (y)) is invertible for any y ∈ By. Left multiplying the equation above by f ′ (g (y))−1
, and

we have g′ (y) = f ′ (g (y))−1
.

6 Integrals

6.1 Riemann Integrability*

In Rk, a finite partition P of the cell C = [a1, b1]×· · ·× [ak, bk] is a finite set of points
{{

xni
}Ni

n=0

}k

i=1

s.t.
{
xni
}Ni

n=0
is a partition of [ai, bi] for each dimension i ∈ {1, . . . , k}, i.e.

ai = x0i ≤ x1i ≤ · · · ≤ xNi
i = bi

Let P be the set of all finite partitions of C.

We can interpret a partition
{{

xni
}Ni

n=0

}k

i=1
as partitioning the cell [a1, b1] × · · · × [ak, bk] into∏k

i=1Ni sub-cells. Denote the set of sub-cells of [a1, b1]× · · · × [ak, bk] under P as C (P ). For each
subcell c ∈ C (P ), let the ”volume”, or measure, of it be defined as the product of the lengths of the
cell in each dimension, and we denote it as µ (c).

For any bounded function f : C → R and a partition P of the cell C = [a1, b1] × · · · × [ak, bk],
for each sub-cell c ∈ C (P ) let

Mc := sup
{
f (x) : x ∈ c

}
mc := inf

{
f (x) : x ∈ c

}
and then define

U (P, f) :=
∑

c∈C(P )

Mcµ (c)

L (P, f) :=
∑

c∈C(P )

mcµ (c)

∫
C
fdx := inf

{
U (P, f) : P ∈ P

}
∫

C

fdx := sup
{
L (P, f) : P ∈ P

}
If
∫
Cfdx and

∫
C
fdx give us the same value, we define this value as the Riemann integral

of f over the cell C, denoted as
∫
C fdx, or

∫
C f (x) dx. In this case, we say that f is Riemann

integrable over the cell C.
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We can define the generalized Riemann integral over an ”infinite cell” [a1,+∞)×· · ·× [ak,+∞)
as the limit of the integral over [a1, b1]× · · · × [ak, bk] when bi → +∞ for each i.

We can also generalize the notion of Riemann integral to allow for integration over a general set
S that may not be a cell. For a function f : S → R, we can find a potentially infinite cell C s.t.
C ⊃ S, and extend the domain of f to C by defining a new function fC : C → R as

fC (x) :=

{
f (x) , if x ∈ S
0, if x ∈ C\S

and then we define
∫
S f (x) dx :=

∫
C fC (x) dx.

Note that not all functions are Riemann integrable. For example, consider the function f :
[0, 1] → R defined as

f (x) =

{
1, if x is rational
0, if x is irrational

f is not Riemann integrable over [0, 1]. f is generally referred to as the Dirichlet function.
The following theorem provides a sufficient condition for Riemann integrability of single-variate

functions.

Theorem 6.1. Let f be a bounded real function on [a, b], and it is discontinuous only at finitely
many points on [a, b]. Then f is Riemann-Stieltjes integrable over [a, b].

See Rudin’s Theorem 6.10 for a proof for a more general case. The theorem requires continuity
”almost everywhere”4.

Generally, if a f : A ⊂ Rk → R is bounded on some bounded S ⊂ A and discontinuous only at
finitely many points on S, then f is Riemann integrable over S. The functions we discuss in this
course are discontinuous only at finitely many points on their domain. Note that S being bounded
is not always necessary (for functions that converge to zero fast enough).

6.2 Fundamental Theorem of Calculus

The next theorem relates integration to differentiation. It provides us the most fundamental tool
to calculate the value of a particular integral.

Theorem 6.2 (Fundamental Theorem of Calculus). If f is (Riemann) integrable w.r.t. x on [a, b],
and if there is a differentiable function F on [a, b] s.t. F ′ = f , then∫ b

a
fdx = F (b)− F (a)

F is called the antiderivative (or indefinite integral) of f on [a, b], noted
∫
f(x)dx.

See Rudin’s Theorem 6.21 for a proof.

4Finiteness of discontinuities is not even necessary as long as the set of discontinuities form a set of Lebesgue
measure zero.
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Antiderivatives of some commonly used functions:∫
xαdx =

1

α+ 1
xα+1 + C,α ̸= −1∫

1

x
dx = ln(|x|)dx+ C, x ̸= 0∫

eαxdx =
1

α
eαx + C,α ̸= 0∫

sinxdx = − cosx+ C

where C ∈ R is a constant.
The next three properties are especially useful in calculation of single integrals, and we state

them below in an informal way. See Rudin’s Theorem 6.17, 6.19, and 6.22 for their exact statements
and their proofs.

1. Differentiation of α: ∫ b

a
f (x) dα (x) =

∫ b

a
f (x)α′ (x) dx

2. Change of variable: ∫ b

a
f
(
ϕ (x)

)
dα
(
ϕ (x)

)
=

∫ ϕ(b)

ϕ(a)
f (y) dα (y)

3. Integration by part:∫ b

a
f (x) dg (x) = f (b) g (b)− f (a) g (a)−

∫ b

a
g (x) df (x)

6.3 Multiple Integrals

6.4 Multiple Integrals over Product Domains

Theorem 6.3 (Fubini). Let CX = [a1, b1]×· · ·× [ak, bk] and CY = [ak+1, bk+1]×· · ·× [ak+m, bk+m].
Consider a continuous function f : CX × CY →= R. We have∫

CX×CY

f (x, y) d (x, y) =

∫
CY

(∫
CX

f (x, y) dx

)
dy =

∫
CX

(∫
CY

f (x, y) dy

)
dx

Fubini’s theorem allows us to rewrite a double integral as an iterated integral, and the order of
integration does not matter. In the theorem above, I assume f to be continuous in order to make
sure that all integrals are well-defined. However, this continuity assumption is not necessary and
can be relaxed if we work with Lebesgue integrals.

If C = [a1, b1]×· · ·× [ak, bk] and f : C → R is continuous, then we can repeatedly apply Fubini’s
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theorem and calculate
∫
C f (x) dx as k nested single variable integrals. To see this,∫

C
f (x) dx =

∫
[a1,b1]×([a2,b2]×···×[ak,bk])

f (x) d
(
x1, (x2, . . . , xk)

)
=

∫
[a2,b2]×···×[ak,bk]

(∫ b1

a1

f (x) dx1

)
d (x2, . . . , xk)

=

∫
[a2,b2]×([a3,b3]×···×[ak,bk])

(∫ b1

a1

f (x) dx1

)
d
(
x2, (x3, . . . , xk)

)
=

∫
[a3,b3]×···×[ak,bk]

∫ b2

a2

(∫ b1

a1

f (x) dx1

)
dx2

 d (x3, . . . , xk)

= · · ·

=

∫ bk

ak

· · ·

∫ b2

a2

(∫ b1

a1

f (x) dx1

)
dx2

 · · ·

 dxk

6.5 Double Integrals Over General Regions

We use double integral as an example to illustrate integration over general domains. Suppose we
want to integrate continuous f(x, y) over a set A := {(x, y) ∈ R2 : x ∈ [a, b], y ∈ [u(x), v(x)]}.∫

A
f(x, y)dxdy =

∫ b

a

(∫ v(x)

u(x)
f(x, y)dy

)
dx

6.6 Change of Variables

Next we show change of variables in multiple integrals, still using double integral as an example.
Consider double integral

∫
A f(x, y)dxdy. Suppose that

x = g(u, v), y = h(u, v)

defines a one-to-one C1 transformation from an open and bounded set A′ in the uv-plane onto
an open and bounded set A in the xy-plane, and assume the Jacobian determinant

∂(g, h)

∂(u, v)
:= det

[∂g/∂u ∂g/∂v
∂h/∂u ∂h/∂v

]
is bounded on A′. Assume f is bounded and continuous on A. Then∫

A
f(x, y)dxdy =

∫
A′

f(g(u, v), h(u, v))d|∂(g, h)
∂(u, v)

|dudv

where |∂(g,h)∂(u,v) | is the absolute value of the Jacobian determinant.

Notice that we sometimes do not need to solve for ∂(g,h)
∂(u,v) explicitly. We have the following

identity:
∂(g, h)

∂(u, v)

∂(u, v)

∂(x, y)
= 1.
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The right-hand Jacobian is easy to calculate if you know u(x, y) and v(x, y); then the left-hand one
- the one needed - will be its reciprocal.

This result can be generalized to n-dimensional multiple integrals.

6.7 Derivatives of Integrals

Consider a parameterized integral ∫ v(x)

u(x)
f (x, t) dt

The variable of integration is t, and x is a real-valued parameter. We allow both the function f (x, t)
of t and the interval of integration

[
u (x) , v (x)

]
to depend on the parameter x. As a consequence,

the value of this integral also depends on the parameter x. Define the value of the integral as

I (x) :=
∫ v(x)
u(x) f (x, t) dt, and then I (x) can be viewed as a function of the parameter x. The

next theorem provides a sufficient condition for I (x) to be differentiable, and also a formula for
calculating the derivative of I (x).

Theorem 6.4 (Leibniz’s Formula). Let f be a function from a subset A of R2 to R. Let rectangle
E := [a, b] × [c, d] ⊂ A with a < b and c < d. Let u and v be two C1 functions from [a, b] to [c, d].

If ∂f
∂x (x, t) exists for any (x, t) ∈ E and ∂f

∂x is continuous on E, then I (x) :=
∫ v(x)
u(x) f (x, t) dt is

differentiable on [a, b], and

I ′ (x) = f
(
x, v (x)

)
v′ (x)− f

(
x, u (x)

)
u′ (x) +

∫ v(x)

u(x)

∂f

∂x
(x, t) dt

See FMEA Section 4.2 for a proof. To get some intuitions, the formula states that x affects the

value of the integral
∫ v(x)
u(x) f (x, t) dt through three channels: f

(
x, v (x)

)
v′ (x) is the effect through

the upper bound of integration v (x), −f
(
x, u (x)

)
u′ (x) is the effect through the lower bound of

integration u (x), and
∫ v(x)
u(x)

∂f
∂x (x, t) dt is the effect through the change in the function f itself.

The next theorem states that under some conditions on function f , Leibniz’s Formula can be
applied to cases where the region of integration is unbounded.

Theorem 6.5. Let f be a function from a subset A of R2 to R. Let infinite rectangle E :=
[a, b]× [c,+∞) ⊂ A. with a < b. Let u be a C1 function from [a, b] to [c,∞). If

(1) ∂f
∂x (x, t) exists for any (x, t) ∈ E and ∂f

∂x is continuous on E, and

(2) ∂f
∂x (x, t) is integrably bounded, that is, there exists a function p : [c,∞) → R+ s.t.

|∂f∂x (x, t) | ≤ p(t) for any t ∈ [c,∞) , x ∈ [a, b] and
∫ +∞
c p(t)dt < ∞

then I (x) :=
∫∞
u(x) f (x, t) dt is differentiable on [a, b], and

I ′(x) = −f
(
x, u (x)

)
u′ (x) +

∫ ∞

u(x)

∂f

∂x
(x, t) dt

7 Homogeneous Functions

This section introduces the definition of homogeneous functions and proves some of their properties.

Definition 7.1. A set C in real vector space V is said to be a cone, iff λv ∈ C for any λ ∈ R++

and v ∈ C.
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Definition 7.2. Let C be a cone in real vector space V , and let W be another real vector space.
For k ∈ R, a function f : C → W is said to be homogeneous of degree k iff f (λv) = λkf (v) for
any λ ∈ R++ and v ∈ C.

In the definition above, because C is a cone, we know that f (λv) is defined whenever λ ∈ R++

and v ∈ C.
In most applications, C is a cone in Rn (usually C = Rn

++ or Rn
+), W = R, and k is a non-negative

integer.

Theorem 7.3. Let C be a cone in Rn, and f : C → R homogeneous of degree k. Let x ∈ int (C)
and λ > 0. If ∂f

∂xi
exists at x, then ∂f

∂xi
exists at λx, and we have

∂f

∂xi
(λx) = λk−1 ∂f

∂xi
(x)

Shortly put, the theorem says that a partial of a function homogeneous of degree k is homoge-
neous of degree k − 1, if the partial exists.

Proof. By definition,

∂f

∂xi
(λx) =

d

dt
f (λx1, λx2, . . . , λxi + t, . . . , λxn)

∣∣∣∣
t=0

=
d

dt
λkf

(
x1, x2, . . . , xi +

t

λ
, . . . , xn

)∣∣∣∣∣
t=0

= λk · d

dt
f

(
x1, x2, . . . , xi +

t

λ
, . . . , xn

)∣∣∣∣∣
t=0

= λk · ∂f

∂xi
(x) · d

dt

(
t

λ

)∣∣∣∣∣
t=0

= λk · ∂f

∂xi
(x) · λ−1 = λk−1 ∂f

∂xi
(x)

The next theorem is known as Euler’s equation for homogeneous functions.

Theorem 7.4 (Euler’s Equation). Let C be a cone in Rn, and f : C → R homogeneous of degree
k and differentiable at x ∈ int (C), and then we have

▽f (x) · x = kf (x)

where · is the dot product.

Proof. By definition of homogeneity, we have f (λx) = λkf (x) for any λ > 0. Consider both sides
as a function of λ, and we have

d

dλ
f (λx)

∣∣∣∣
λ=1

=
d

dλ

(
λkf (x)

)∣∣∣∣
λ=1

By chain rule, we have

LHS = f ′ (λx)
∣∣
λ=1

· d

dλ
(λx)

∣∣∣∣
λ=1

= ∇f (x) · x
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and

RHS = f (x) · d

dλ

(
λk
)∣∣∣∣

λ=1

= f (x) · kλk−1
∣∣∣
λ=1

= kf (x)

A weaker notion than homogeneity is the notion of homotheticity.

Definition 7.5. Let C be a cone in real vector space V . A function f : C → R is said to be
homothetic iff there exists h : C → R homogeneous of some degree k and g := R → R strictly
increasing s.t. f = g ◦ h.

Clearly, if f is homothetic, we have f (λv) = f (λw) for any λ ∈ R++ and v, w ∈ C s.t.
f (v) = f (w).

Let’s state the next result about homothetic functions without proof. Intuitively, it says that the
”marginal rate of substitution” of a homothetic function is preserved under scalar multiplication.

Theorem 7.6. Let C be a cone in Rn, and f : C → R homothetic. Let x ∈ int (C) and λ > 0. If
f is differentiable at x and λx, and ∂f

∂xj
(λx) and ∂f

∂xj
(x) are not zero, then we have

∂f
∂xi

(λx)
∂f
∂xj

(λx)
=

∂f
∂xi

(x)
∂f
∂xj

(x)
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