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1 Vectors and Vector Spaces

1.1 Vector Spaces

Definition 1.1. A triple (V,+, ·) where

• V is a set, whose elements are called vectors.

• + : V 2 → V is an operation called vector addition (for u and v are vectors, we write u+ v).

• . : R× V → V is an operation called scalar multiplication (for v is a vector and λ a real,
we write λv).

is said to be a (real) vector space (or a vector space over R) iff it satisfies the following 7 axioms:

(1) Vector addition is commutative and associative: ∀u,v,w ∈ V , u+ v = v + u and (u+ v) +w =
u+ (v +w).

(2) Existence of an identity element for the addition: there exists a zero vector denoted 0 st.
0+ u = u+ 0 = u,∀u ∈ V .

(3) Existence of an inverse element for the addition: for any u ∈ V , there exists an additive
inverse of u, noted −u, st. u+ (−u) = 0.

(4) Existence of an identity element 1 ∈ R for the scalar multiplication: 1u = u.

(5) Mixed associativity: for any λ1, λ2 ∈ R and v ∈ V , we have (λ1λ2)v = λ1 (λ2v)

(6) Scalar multiplication is distributive w.r.t. vector addition: λ (v1 + v2) = λv1 + λv2.

(7) Scalar multiplication is distributive w.r.t. addition in R: (λ1 + λ2)v = λ1v + λ2v.

Notice that the two operators + : V × V → V and · : R × V → V for the vector space are
different from + and · defined on R. Also, 0 in (2) is the zero vector, not the neutral element 0
in R, although we usually (ab)use the same notation.

We can show the following results using the 7 axioms of a vector space:

(1) the zero vector 0 is unique in a vector space;

(2) the additive inverse of vector v ∈ V is unique;

(3) −v = (−1)v. And therefore we can define vector subtraction by v1 − v2 := v1 + (−v2);

(4) 0v = 0,∀v; λ0 = 0, ∀λ ∈ R, and that λv = 0 implies either λ = 0 or v = 0.

These are left as exercises.
It is also possible to define a vector space over C instead of R, in which case the definition is

the same replacing R by C and we have a complex vector space. We will do so in some specific
situations; unless otherwise mentioned, a vector space will be understood as a real vector space .

A major example of a n-dimensional real vector space is ⟨Rn,+, ·⟩, where the vector addition
and scalar multiplication are defined in a component-by-component fashion. An element v in Rn is
v = (v1, v2, . . . , vn), where vi ∈ R are called components or coordinates of v. The zero vector is
the vector whose components are all zero.
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But the concept of vector spaces can be much more general than that. For example, the set
of functions from X to R is a vector space, where X is some arbitrary nonempty set. The vec-
tor addition is defined by (f + g) (x) := f (x) + g (x), and the scalar multiplication is defined by
(λf) (x) := λf (x). The zero vector is the function that is constant at 0. We can verify that this
satisfies all the requirements for a vector space

For a vector space (V,+, ·), a subset W is called a vector subspace of (V,+, ·) iff
(
W,+|W , ·|W

)
is a vector space, where +|W and ·|W are + and · defined for V restricted in W .

Proposition 1.2. (W,+, ·) is a vector subspace of (V,+, ·) iff:

(1) W contains the zero vector 0.

(2) W is closed under vector addition: ∀u,v ∈ W,u+ v ∈ W .

(3) W is closed under scalar multiplication: ∀u ∈ W, ∀λ ∈ R, λu ∈ W .

Conditions (2) and (3) can be replaced by the following compound condition :

λu+ µv ∈ W, ∀λ, µ ∈ R, ∀u,v ∈ W

Note that the way that operations + and · are defined for a general vector space (Definition 1.1)
has already implied that a vector space is closed under vector addition and scalar multiplication.
The only thing that could possibly go wrong for a subset W to be a vector space itself, is that the
result of some operation does not belong to W , and the definition of a subspace prohibits this.

Exercise 1.3. (i) Let I an interval in R. Show that the set of continuous functions from I to R,
denoted C(I,R), is a vector subspace of the set of functions from I to R.

(ii) Show that the set of real sequences RN is a vector space.

(iii) Show that the set :

S := {un ∈ RN|∀n ∈ N, un+2 = 3un+1 + 4un}

is a vector subspace of RN.

(iv) Show that :

E := {(x, y, z) ∈ R3, x+ 2y + z = 0}

is a vector subspace of R3.

Any vector subspace must contain the zero vector 0. It can be shown that intersection of vector
subspaces is still a vector subspace, but union may not.

Proposition 1.4. Let E a vector space. The intersection of a family of vector subspaces of E is a
vector space.

Proof. Let {Wi} be a collection of vector subspaces. Since 0 ∈ Wi for each i, we have that 0 ∈
⋂

iWi.
Let v,w ∈ Wi and α, β ∈ R. Since v,w ∈

⋂
iWi, we have v,w ∈∈ Wi for each i and therefore

αv + βw ∈ Wi for each i since each Wi is a vector subspace. Hence αv + βw ∈ ∩iWi, and thus
∩iWi is a vector subspace.
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This allows us to define the concept of span.

Definition 1.5. Let (V,+, ·) be a vector space and S a subset of V . The subspace generated by
S, noted Span(S), is the smallest vector subspace of V that contains S.

In other words Span(S) is the smallest vector subspace in which the set S lives.

Proposition 1.6. Let {Wi} be the collection of all vector subspaces of V containing the set S. Then,
Span(S) =

⋂
iWi

Proof. First, observe that V ∈ {Wi}, thus this latter family is nonempty. We know from Proposition
1.4 that the intersection

⋂
iWi is itself a vector subspace of V . By assumption, for each i we have

S ⊆ Wi. This implies S ⊆
⋂

iWi.
Now, consider any vector subspace W that contains S. It follows that W ∈ {Wi} and thus⋂

iWi ⊆ W . Summing up, we proved that
⋂

iWi is a vector subspace that contains S and it is the
smallest vector subspace with this property, i.e.,

⋂
iWi = Span(S)

1.2 Collections of Vectors : Linear (In)Dependence and Span

Define linear combinations for arbitrary collections of vectors.

Definition 1.7. Let v1, ...,vn be n vectors of V . A linear combination of v1, ...,vn is a vector
λ1v1 + ...+ λnvn for n scalars λ1, ..., λn ∈ R.

Example 1.8. In R3 consider the two vectors e1 = (1, 0, 0) and e2 = (0, 1, 0). A vector of R3 is a
linear combination of e1 and e2 if it has the form (λ1, λ2, 0) for λ1, λ2 ∈ R. In fact, (λ1, λ2, 0) =
λ1e

1 + λ2e
2

This allows us to introduce the concept of linear independence.

Definition 1.9. In vector space (V,+, ·), a finite set of vectors v1, . . . ,vn are said to be linearly
independent, iff the linear combination

∑n
i=1 λivi = 0 implies λi = 0 for any i. Otherwise,

v1, . . . ,vn are said to be linearly dependent.

Clearly, if a vector can be represented by a linear combination of a set of linearly independent
vector, then the representation is unique.

Proposition 1.10. Let v1, ...,vn be linearly independent elements of a vector space (V,+, ·). Let
(λi)i∈N and (µi)i∈N be reals. If:

λ1v1 + ...+ λnvn = µ1v1 + ...+ µnvn,

then for all i, λi = µi.

Proposition 1.11. In a vector space, v1, ...,vn are linearly dependent iff ∃vi (i ∈ {1, 2, ..., n} := N)
that can be represented by a linear combination of (vj)j ̸=i.

Proof. ” =⇒ ” ” Let S = {vi}ni=1 be a finite and linearly dependent set of V . Let 2 ≤ k ≤ n be the
smallest natural number between 2 and n such that the set {v1, . . . ,vk} is linearly dependent. At
worst k is equal to n since by hypothesis {vi}ni=1 is linearly dependent. By the definition of linear

dependence, there exist k scalars
{
λk
i=1

}
, not all null, such that

λ1v1 + λ2v2 + · · ·+ λkvk = 0
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We have λk ̸= 0 because otherwise {v1,v2, . . . ,vk−1} would be a linearly dependent set, which
contradicts the fact that k is the smallest number between 2 and n such that {v1,v2, . . . ,vk} is
linearly dependent. Since λk ̸= 0, we can write:

vk =
−λ1

λk
v1 +

−λ2

λk
v2 + · · ·+ −λk−1

λk
vk−1

Therefore, vk is a linear combination of the vectors {v1, . . . ,vk−1}
” ⇐= ” : Suppose that the vector vk ∈ {vi}ni=1 is a linear combination of some other elements

of {vi}ni=1. Without loss of generality, assume k = 1. There exists a set {λi}ni=1 of scalars such that

v1 = λ2v2 + · · ·+ λ2vn

Define the real coefficients {βi}ni=1 as follows

βi =

{
−1 i = 1

λi i ≥ 2

By construction, {βi}ni=1 is a set of scalars, not all null such that
∑n

i=1 βiv1 = 0. In fact,

n∑
i=1

βiv1 = −v1 + λ2v2 + λ3v3 + · · ·+ λnvn = −v1 + v1 = 0

It follows that {vi}ni=1 is linearly dependent set.

The next theorem is a fundamental result about linear dependency.

Theorem 1.12. In vector space (V,+, ·), if u1, . . . ,um can be represented by linear combinations
of v1, . . . ,vn, and m > n, then u1, . . . ,um are linearly dependent.

Shortly put, if ”more” can be represented by ”less”, then ”more” must be linearly dependent.
Let’s admit this result without providing a proof, but you may adapt the proof of Lang’s Theorem
3.1 to prove it.

You can also observe that if a collection of vectors is linearly independent, every subcollection
(obtained by removing some vectors from the collection) is also linearly independent. A supercol-
lection (obtained by adding some vectors) is still independent if and only if the added vectors do
not belong to the span of the initial collection.

It is straightforward that for a finite collection S = {v1, ..., vn} of vectors in V , the span of S is
simply the set of linear collection of those vectors :

Span(S) =

z ∈ V,∃λ1, ..., λn, z =

n∑
i=1

λixi


Definition 1.13. We say that a finite collection S = {v1, ..., vn} of vectors in V spans a subset
A ⊂ V if Span(S) = A.

It is straightforward to observe that if a collection of vectors spans V (the whole space), then
every supercollection (obtained by adding vectors) also spans V .
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1.3 Basis

The idea behind a basis is to give a unique representation for each vector as a linear combination
of a collection of vectors, by combining linear independence and spanning properties.

Definition 1.14. Let (V,+, ·) a vector space. The collection of vectors v1, . . . ,vn ∈ V is called a
(finite) basis of V if :

1. v1, . . . ,vn are linearly independent, and

2. v1, . . . ,vn span V , i.e Span({v1, . . . ,vn} = V

Condition (2) states that all vectors in V can be represented by a linear combination of the
vectors v1, . . . ,vn. Note that because of condition (1), we know that the representation in condition
(2) is unique. Given a basis v1, ..., vn, the unique real numbers λ1, ..., λn such that x = λ1v1 + . . .+
λnvn are called the coordinates of x ∈ V .

Note that a basis of V is not unique. However, two bases must have the same number of vectors.
To see this, suppose u1, . . . ,um and v1, . . . ,vn are both bases of V , and m < n. Then u1, . . . ,um

can represent v1, . . . ,vn, and therefore v1, . . . ,vn are linearly dependent by Theorem 1.12. This
contradicts the assumption that v1, . . . ,vn form a basis of V .

Therefore, it is without ambiguity to define the dimension of V as the number of vectors in its
basis, denoted as Dim (V ).

The next two propositions shows two other equivalent definitions of bases.

Proposition 1.15. In vector space (V,+, ·), v1, . . . ,vn are a basis of V iff they have the maximum
number of linearly independent vectors in V .

In words, the dimension of V is the largest possible cardinality of a linearly independent collection
of vectors in V .

Proof. ⇐:
Take any y ∈ V . WTS y can be represented by a linear combinations of v1, . . . ,vn.
Because v1, . . . ,vn has the maximum number of linearly independent vectors in S, the vectors

v1, . . . ,vn and y are linearly dependent. Therefore, they have a non-trivial representation of the
zero vector:

n∑
i=1

λivi + µy = 0

Observe that µ ̸= 0, otherwise λi = 0 for all i, and the representation becomes trivial. Therefore,

y =
n∑

i=1

(
−λi

µ

)
vi

which represents y as a linear combinations of v1, . . . ,vn.
⇒:
Suppose there exists a set of linearly independent vectors u1, . . . ,um in S with m > n. Because

v1, . . . ,vn are a basis of V , the vectors v1, . . . ,vn can represent u1, . . . ,um, and therefore u1, . . . ,um

are linearly dependent by Theorem 1.12. Contradiction.

Proposition 1.16. In vector space (V,+, ·), v1, . . . ,vn are a basis of V iff they have the minimum
number of vectors in V that can represent all vectors in V as their linear combinations.
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In other words, the dimension of V is the smallest possible cardinality of a collection of vector
that spans V .

Proof. ⇐:
WTS v1, . . . ,vn are linearly independent. Suppose not, then we can represent one of them as

a linear combination of the others. Without loss of generality, suppose vn can be represented by
v1, . . . ,vn−1. Because all vectors in V can be represented by v1, . . . ,vn, they can also be represented
by v1, . . . ,vn−1, which contradicts the assumption that v1, . . . ,vn have the minimum number of
vectors in V that can represent all vectors in V .

⇒:
Suppose there exists a set of vectors u1, . . . ,um in V that can represent all vectors in S, and

m < n. Then u1, . . . ,um can represent v1, . . . ,vn, and therefore v1, . . . ,vn are linearly dependent
by Theorem 1.12. This contradicts the assumption that v1, . . . ,vn are a basis of V .

If dimV = n, then we say that the vector space is n-dimensional. Clearly, any set of more
than n vectors in an n-dimensional vector space must be linearly dependent.

More specifically, the two results give that a collection that is linearly independent (resp. spans
V ) has at most (resp. at least) n elements, and has exactly n if and only if it is a basis. We also
have reduction and completion results :

Proposition 1.17. From every collection that spans V , we can extract a basis. Every linearly
independent collection in V can be completed into a basis.

Since any vector subspace of V is also a vector space, we can talk about bases for vector subspaces
as well. Sometimes, the dimension of a vector subspace is called the rank to differentiate it from
the dimension of the whole ambient space, but it is not necessary to make this distinction. If V is
an n-dimensional vector space, a direct consequence of the definition is that the span of S is the
same as the span of its basis for any S ⊂ V

Proposition 1.18. In vector space (V,+, ·), suppose v1, . . . ,vn are a basis of S ⊂ V . then :

Span(S) = Span({v1,v2, ...,vn})

This gives us immediate inequalities in terms of dimension :

Proposition 1.19. If S is a vector subspace of V , then dim(S) ≤ dim(V ) and dim(S) = dim(V )
if and only if S = V .

More generally, we can prove that any two vector spaces are isomorphic (there exists a linear
bijection between them) if and only if they have the same dimension.

For example, the space Pn of all polynomials of degree at most n, consisting of all polynomials
of the form

p(t) = a0 + a1t+ ...+ ant
n;

is an n+ 1-dimensional vector space, for which one basis is {1, t, ..., tn}.
It is also possible that a vector space V does not have a finite basis, in which case we say that

V is infinite-dimensional.
The canonical basis of the vector space Rn is e1, . . . , en, where e1 := (1, 0, 0, . . . , 0), e2 :=

(0, 1, 0 . . . , 0), and so forth. Therefore dimRn = n.
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1.4 Inner Products, Norms, and Metrics

Let’s define an inner product operator on a real vector space V , to give it more structure.

Definition 1.20. Let (V,+, ·) be a vector space. The 4-tuple
(
V,+, ·, ⟨·, ·⟩

)
is an inner product

space iff the inner product operator ⟨·, ·⟩ : V × V → R satisfies the following properties:

(1) Commutativity: ⟨u,v⟩ = ⟨v,u⟩ for any u,v ∈ V ,

(2) Linearity: ⟨λ1u1 + λ2u2,v⟩ = λ1 ⟨u1,v⟩ + λ2 ⟨u2,v⟩ for any λ1, λ2 ∈ R and u1,u2,v ∈ V ,
and

(3) Positive definiteness: ⟨u,u⟩ ≥ 0 for any u ∈ V , and equality holds iff u = 0.

Note that linearity also implies ⟨v,0⟩ = 0 for any v ∈ V , because

⟨v,0⟩ = ⟨v, 0u⟩ = 0 · ⟨v,u⟩ = 0

where u is an arbitrary vector in V .
In an inner product space

(
V,+, ·, ⟨·, ·⟩

)
, two vectors v and u are said to be orthogonal iff

⟨u,v⟩ = 0.
A leading example of inner products is the dot product defined on Rn. The dot product of

two vectors x = (x1, . . . , xn) and y = (y1, . . . , yn) in Rn is defined as

x · y :=
n∑

i=1

xiyi

Notice that the dot product above defined for two vectors is different from the scalar multiplication,
which is defined for a scalar and a vector, although we usually use the same notation ·. It is
straightforward to verify that the dot product satisfies our requirements on inner products.

An inner product induces a norm ∥·∥ : V → R+ by
[
∥v∥ :=

√
⟨v,v⟩

]
Using the properties of inner product, it is straightforward to show that (1) ∥v∥ = 0 iff v = 0,

and (2) ∥λv∥ = |λ| ∥v∥.
In Rn, the norm induced by the dot product

∥x∥2 :=

√√√√ n∑
i=1

x2i

is called the Euclidean norm, or L2 norm.
Now let’s look at an important inequality in inner product spaces.

Theorem 1.21 (Cauchy-Schwarz Inequality). In an inner product space
(
V,+, ·, ⟨·, ·⟩

)
, we have

∥u∥ ∥v∥ ≥
∣∣⟨u,v⟩∣∣

for any u,v ∈ V .

Proof. If u = 0, the inequality holds trivially. Now consider the case where u ̸= 0.
First, I claim that the vectors λu and v− λu are orthogonal, where the real number λ is given

by

λ :=
⟨u,v⟩
∥u∥2

8



This is because

⟨λu,v − λu⟩ = λ ⟨u,v − λu⟩ = λ
[
⟨u,v⟩ − λ ⟨u,u⟩

]
= λ

[
⟨u,v⟩ − λ ∥u∥2

]
= 0

Therefore, we have

∥v∥2 =
∥∥λu+ (v − λu)

∥∥2
=
〈
λu+ (v − λu) , λu+ (v − λu)

〉
= ⟨λu, λu⟩+ 2

〈
λu, (v − λu)

〉
+ ⟨v − λu,v − λu⟩

= λ2 ∥u∥2 + ∥v − λu∥2

As a result, we have ∥v∥2 ≥ λ2 ∥u∥2, i.e.

∥v∥2 ≥

(
⟨u,v⟩
∥u∥2

)2

∥u∥2

i.e. ∥v∥2 ∥u∥2 ≥ ⟨u,v⟩2, and therefore we have ∥u∥ ∥v∥ ≥
∣∣⟨u,v⟩∣∣.

Notice that Cauchy-Schwarz inequality also tells us that any norm induced by an inner product
satisfies the triangle inequality: ∥u+ v∥ ≤ ∥u∥+ ∥v∥ for any u,v ∈ V . To see this,(

∥u∥+ ∥v∥
)2

= ∥u∥2 + 2 ∥u∥ ∥v∥+ ∥v∥2 ≥ ⟨u,u⟩+ 2 ⟨u,v⟩+ ⟨v,v⟩
= ⟨u+ v,u+ v⟩ = ∥u+ v∥2

and taking square root gives us ∥u+ v∥ ≤ ∥u∥+ ∥v∥.
We can also take the triangle inequality as a part of the definition of the norm, and define the

norm directly without the inner product.

Definition 1.22. Let (V,+, ·) be a vector space. The 4-tuple
(
V,+, ·, ∥·∥

)
is a normed vector

space iff the norm ∥·∥ : V → R+ satisfies the following properties:

(1) ∥v∥ = 0 iff v = 0, for any v ∈ V ,

(2) ∥λv∥ = |λ| ∥v∥, for any λ ∈ R and v ∈ V , and

(3) Triangle inequality: ∥u+ v∥ ≤ ∥u∥+ ∥v∥, for any u,v ∈ V .

Clearly, if
(
V,+, ·, ⟨·, ·⟩

)
is an inner product space, and we define the norm ∥·∥ : V → R+ by

∥v∥ :=
√
⟨v,v⟩, then

(
V,+, ·, ∥·∥

)
is a normed vector space. Especially, the triangle inequality is a

corollary of Cauchy-Schwarz inequality. Therefore, normed vector spaces have less structures, and
are more general than inner product spaces.

In a normed vector space, the norm also induces a metric by d (u,v) := ∥u− v∥. We can verify
that this is indeed a metric on V . Clearly, d (u,v) = 0 iff u = v because of property (1) of the
norm; d (u,v) = d (v,u) because of property (2) of the norm. Finally, a metric induced by the
norm satisfies the triangle inequality because the norm satisfies the triangle inequality. To see this,

d (x,y) + d (y, z) = ∥x− y∥+ ∥y − z∥ ≥
∥∥(x− y) + (y − z)

∥∥
= ∥x− z∥ = d (x, z)
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Therefore, a normed vector space is automatically a metric space.
To summarize, in a vector space, an inner product induces a norm, which in turn induces a

metric.
If we consider Rn endowed with the dot product as an inner space, then the dot product induces

the L2 norm, which in turn induces the Euclidean distance

d2 (x,y) :=

√√√√ n∑
i=1

(xi − yi)
2

Recall that we have shown that a valid inner product induces a valid norm, which in turn induces
a valid metric. Because the dot product on Rn is a valid inner product, the Euclidean distance
function d2 is a valid metric; especially, it satisfies the triangle inequality required for metrics.

Note that for (1) a given vector space, there can exist more than one valid inner product; (2) for
a given vector space, there can exist more than one valid norm, and a valid norm is not necessarily
induced by some inner product, even if the space is an inner product space (for example the sup
norm ||x|| := maxi |xi| for ∀x ∈ Rn in space Rn is not induced by any inner product); (3) for a
given vector space, there can exist more than one valid metric, and a valid metric is not necessarily
induced by some norm, even if the vector space is a normed vector space (for example the discrete
metric is not induced by any norm).

2 Linear Functions on Vector Spaces

2.1 Definition, Examples

Definition 2.1. Let E,F two vector spaces and f : E → F a function. We say that f is linear if :

∀(x, y) ∈ E2, f(x+E y) =f(x) +F f(y)

∀x ∈ E,∀λ ∈ R, f(λx) =λf(x)

The two conditions can again be compacted into f(λx + y) = λf(x) + f(y) for all x, y, λ. We
denote by L(E,F ) the set of linear functions from E to F . A linear applications from E to E is
sometimes called an endomorphism of E; the set of such functions is denoted as L(E) (instead of
L(E,E)). If a linear function is bijective, it is called an isomorphism. A bibjective endomorphism
is called an automorphism.

Example 2.2. Let E a real vector space. Fix λ ∈ R, and define the function :

h : E → E

x 7→ λx

h is a linear function from E to E (an endomorphism).

Example 2.3. Let a, b, c ∈ R, the function :

f : R3 → R
(x, y, z) 7→ ax+ by + cz

is a linear function.
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Example 2.4. Let I an interval in R. The derivation operator D, understood as a function from
the space of differentiable real functions over I, denoted D(I,R) to the space of real function over
I, is a linear function (you can verify that those two spaces are indeed vector spaces, although they
are not finite dimensional). Indeed, we know :

D(λf + g) = (λf + g)′ = λf ′ + g′ = λD(f) +D(g)

2.2 Properties

Proposition 2.5. Let f : E → F linear. Then :

f(0E) = 0F

∀x ∈ E, f(−x) = −f(x)

Proof.

f(0E) = f(0 · 0E) = 0 · f(0E) = 0F

f(−x) = f((−1) · x) = (−1)f(x) = −f(x)

Theorem 2.6. If f : E → F is linear, then :

• If E′ is a vector subspace of E, then f(E) is a vector subspace of F

• If F ′ is a vector subspace of F , then f−1(F ) is a vector subspace of E

The proof of this theorem is left as an exercise.
In particular, f(E) is a vector subspace of E called the Image or Range of f and denoted Im(f);

f−1({0F }) is a vector subspace of E called the kernel of f and denoted Ker(f). Those two sets
provide a very neat characterization of injectivity and surjectivity for linear functions over vector
spaces.

Proposition 2.7. If f : E → F is linear, then :

• f is injective if and only if Ker(f) = 0E

• f is surjective if and only if Im(f) = E

Proof. The second statement is direct by definition. To prove the first equivalence, first assume
f injective. Take x ∈ Ker(f), i.e f(x) = 0F . Since f(0E) = 0F , by injectivity x = 0E , hence
Ker(f) = {0E}. For the other implication, assume Ker(f) = {0E}. Consider x, x′ such that
f(x) = f(x′). By linearity f(x− x′) = 0F , hence x− x′ ∈ Ker(f) so x− x′ = 0E . In other words,
x = x′.

Lastly, we give some characterizations for the image of spanning and independent collections of
vectors.

Proposition 2.8. Let f : E → F a linear function. Then

(i) If (x1, ..., xn) a collection of vectors in E spans E, then (f(x1), ..., f(xn)) spans Im(f)

(ii) If (x1, ..., xn) a collection of vectors in E is dependent, then (f(x1), ..., f(xn)) is dependent

11



(iii) f is injective if and only if for every independent collection of vectors in E (x1, ..., xn),
(f(x1), ..., f(xn)) is independent.

(iv) (e1, ..., en) is a basis for E and f is bijective if and only if (f(x1), ..., f(xn)) is a basis for F .

This highlights that linear functions are useful to rearrange vector spaces while preserving their
properties. A consequence of the previous proposition is that we can express a change of coordinates
as a linear function. It turns out that this is actually an equivalence. The usefulness of linear
functions between vector spaces leads us to study another object that can actually serve as an
equivalent representation : matrices.

Before we move to the next section, we just state without proof one important theorem for linear
functions between finite dimensional vector spaces.

Theorem 2.9. Let f : E → F a linear function. We have :

dim(E) = dim(Ker(f)) + dim(Im(f))

Furthermore :

dim(Im(f)) ≤ min(dim(E), dim(F ))

and f is injective if and only if dim(Im(f)) = dim(E), f is surjective if and only if dim(Im(f)) =
dim(F ).

3 Matrices

3.1 Definition

Definition 3.1. An m× n matrix is an array with m ≥ 1 rows and n ≥ 1 columns:

A = (aij)ij =


a11 a12 ... a1n
a21 a22 ... a2n
...

...
...

am1 am2 ... amn


where the number aij in the ith row and jth column is called the ijth-entry or the ijth -component.

The set of matrices of size m× n is noted Mmn.

We note Ai the ith row of A and Aj the jth column of A, so that:

A = (A1...An) =

 A1

...
Am


Here are some particular matrices:

• Real numbers can be seen as a 1× 1 matrix.

• A vector of Rk can be seen as a k × 1 matrix (a column vector) or a matrix of size 1 × k (a
row vector). By default a vector is seen as a column vector.

• Matrices with as many rows as columns m = n are called square matrices.

12



• The zero matrix of Mmn is the matrix with all entries equal to zero.

• A square matrix A is diagonal if all its non-diagonal elements are zero: aij = 0 for all i, j
such that i ̸= j. We note A = diag(a11, ....ann).

• The unit matrix of size n is the square matrix of size n having all its components equal to
zero except the diagonal components, equal to 1. It is noted In.

• A square matrix A is upper-triangular if all its elements below its diagonal are nil: aij = 0
for all i > j.

• A square matrix A is lower-triangular if all its elements above its diagonal are nil: aij = 0
for all i < j.

3.2 Operations on matrices

3.2.1 Addition and scalar multiplication

Along with the addition and scalar multiplications operations, the set of matrices Mmn is going
to be a vector space. The two operations are defined on the set Mmn of matrices of the same size
m× n.

Definition 3.2. Let A = (aij) and B = (bij) be two m× n matrices, and λ ∈ R.
(1) The sum A+B is the matrix whose ij-entry is aij + bij.
(2) The scalar multiplication of A by λ, λA is the matrix whose ijth-entry is λaij.

Simply put, we add matrices component-wise and multiply them by scalars component-wise.
Once this structure is defined:

Proposition 3.3. The space Mmn is a vector space of dimension m×n. Its zero is the zero matrix.

To show it is a vector space, just check the 8 axioms of definition. To get the dimension, notice
that if Eij is the matrix whose entries are all zero except the ijth entry which is equal to 1, then

(Eij)
j=1...n
i=1...m is a basis of Mmn. It is called the canonical basis of Mmn.

3.2.2 Multiplication

The matrix multiplication is defined over matrices of different sizes, although sizes need to be
conformable: the product AB is only defined for matrices such that the number of columns of A
is equal to the number of rows of B.

Definition 3.4. Let A = (aij) be an m× n matrix and B = (bij) be an n× s matrix.
Their product AB is the n× s matrix whose ijth-entry is:

(AB)ij =

n∑
k=1

aikbkj

In fact, matrix multiplication should be interpreted as a linear mapping. Recall that in an m×n
matrix with components in R, each column can be viewed as a vector in Rm, and each row can be
viewed as a vector in Rn. If we left-multiply matrix A by another matrix C, each row of the product
CA is a linear combination of the rows of A; therefore, left-multiplying a matrix can be interpreted
as a row transformation. If we right-multiply A by another matrix C, each column of the product
AC is a linear combination of the columns of A; therefore, right-multiplying a matrix should be
interpreted as a column transformation. The following properties of matrix multiplication are easy
to verify from the definition.
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Proposition 3.5. Provided conformable matrices:

• The unit matrix is the neutral element of matrix multiplication: if A is m × n, then ImA =
AIn = A.

• The zero matrix is absorbant: A0 = 0A = 0.

• The multiplications is distributive wrt. addition: A(B + C) = AB + AC and (B + C)A =
BA+ CA.

• The multiplication is associative: A(BC) = (AB)C.1

• A(λB) = λ(AB).

But be careful that, contrary to the multiplication on real numbers,the matrix multiplication is
in general NOT commutative: in general AB ̸= BA. Here is a counter-example:

A =

(
1 2
3 −1

)
, B =

(
2 0
1 1

)

AB = 0 does NOT imply that either A or B is zero, as it does for the multiplication of reals.

Definition 3.6. A square matrix of size n is invertible (or non-singular) iff there exists a matrix
B such that AB = BA = In. Provided existence, the inverse is unique and noted A−1.

To prove the uniqueness of the inverse, assume that B and C are two inverses of A. Then
B = BIn = B(AC) = (BA)C = InC = C, which proves that all inverses of A are equal. Obviously,
if B is the inverse of A, then A is the inverse of B, so the inverse of the inverse of A is A itself:
(A−1)−1 = A. Besides:

Proposition 3.7. If A,B ∈ Mnn are invertible, then so is their product AB and:

(AB)−1 = B−1A−1

For square matrices, it is also possible to define the repeated products, or powers of a square
matrix A.

Definition 3.8. Ak = A...A taken k times. By definition, A0 = In.

We say that a matrix A is idempotent if A2 = A. We say that a matrix A is nilpotent if
Ak = 0 for some integer k.

1To see this, first, (AB)C and A (BC) have the same size m× q. Second, for any (i, l) ∈ {1, . . . ,m} × {1, . . . , q},
we have

(
(AB)C

)
il
=

p∑
k=1

(AB)ik ckl =

p∑
k=1


 n∑

j=1

aijbjk

 ckl

 =

p∑
k=1

 n∑
j=1

aijbjkckl


=

n∑
j=1

 p∑
k=1

aijbjkckl

 =

n∑
j=1

aij

p∑
k=1

bjkckl

 =

n∑
j=1

(
aij (BC)jl

)
=

(
A (BC)

)
il
.
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3.2.3 Transpose and symmetric matrices

Another operation on matrices, although less essential, is the transpose; it takes simply one argument—
a matrix—and returns another matrix.

Definition 3.9. Let A = (aij) be a matrix. The transpose A′ (or AT ) of A is the matrix obtained
by changing its rows into its columns (and vice versa): AT = (aji).

Obviously, if we apply the transpose operator twice, we end up back on A: (AT )T = A. Note
that a row vector is the transpose of a column vector. The following properties of the transpose are
easy to verify from the definition.

Proposition 3.10.

• (λA)T = λAT .

• Transpose of the sum: (A+B)T = AT +BT .

• Transpose of the product: (AB)T = BTAT .

• (A−1)T = (AT )−1 (provided the inverse exists).

Definition 3.11. A square matrix A is symmetric iff it is equal to its transpose A′ = A.

3.2.4 Rank

If A is an m× n real matrix, we can see its n columns A1, ...An as n vectors of Rm. Conversely, if
A1,..., An are n vectors of Rm, we can see them as the m × n matrix whose columns are the Aj .
For instance, note this very useful way to write a linear combination of the vectors Aj using matrix
multiplication (just check the equality entry by entry):

λ1A
1 + ...+ λnA

n = Aλ , where λ =


λ1
...
λn


Since we can look at matrices as a family of vectors, we can also consider the vector space that
these vectors span:

Definition 3.12. If A = (A1, ..., An) is an m×n matrix, we call the space Span(A1, ..., An) spanned
by the columns of A the column space (or image, noted Im(A)) of the matrix A.

We define the rank of a matrix as a natural extension of the rank of a family of vectors.

Definition 3.13. The column rank of a matrix A is the rank of its column space rank(A1, ..., An).

We can do with rows what we have done with columns. We can see the n rows of an m × n
matrix as m vectors of Rn. We call the space Span(A1, ..., Am) spanned by the row vectors of A
the row space of matrix A and its rank the row rank of the matrix. However, the row space is
not as much useful as the column space, and:

Proposition 3.14. The row rank of a matrix is equal to its column rank.
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Because the rows of the product matrix AB are linear combinations of rows of B, the basis of
the rows of B can represent rows of AB, and so we have Rank (AB) ≤ Rank (B). Because the
columns of AB are linear combinations of columns of A, the basis of columns of A can represent
columns of AB, and so we have Rank (AB) ≤ Rank (A). As a result, we always have

Rank (AB) ≤ min
{
Rank (A) , Rank (B)

}
A consequence is that the rank of an m× n matrix is always smaller than both n and m.

Proposition 3.15. A square matrix A of size n is invertible iff rank(A)=n.

Proof. Assume that rank(A)=n, i.e. that the columns of A form a basis of Rn. All vectors of Rn can
be expressed as a linear combination of the columns of A. In particular, the vectors ej , j = 1, ..., n
of the canonical basis of Rn. So for all j, there exist a column vector Bj ∈ Rn such that ej = ABj .
Noting B = (B1, ..., Bn), In = AB (just pool the vectors as columns of matrices).

To prove that B is the inverse of A, we also need to show that BA = In. To do so, note that A′

also has rank n, so that by the same reasoning there exists C such that A′C = In. Taking transpose,
C ′A = In. But then BA = C ′ABA = (C ′A)(BA) = C ′(AB)A = C ′A = In.

Conversely, assume that A is invertible. We want to show that the columns of A are linearly
independent. Consider a linear combination of the columns of A, Aλ for some vector λ ∈ Rn, that
is equal to zero: Aλ = 0. Premultiplying by A−1, λ = A−10 = 0.

3.2.5 Trace

Definition 3.16. Let A = (aij) be a square matrix of size n. The trace of A, noted tr(A), is

tr(A) =
n∑

i=1

aii.

The trace has the following properties:

Proposition 3.17.

• The trace is linear: tr(λA) = λtr(A) and tr(A+B) = tr(A) + tr(B).

• A matrix and its transpose have the same trace: tr(A′) = tr(A).

• If AB and BA are square (but not necessarily A and B), tr(AB) = tr(BA).

3.2.6 Determinants

Definition 3.18. For a square matrix A, its determinant, denoted as det (A), is an element
defined inductively in the following way:

(1) For a 1× 1 matrix A = a11, define its determinant as det (A) := a11.
(2) For an n× n matrix where n ≥ 2, define its determinant as

det (A) :=
n∑

j=1

(−1)1+j a1j det
(
A−1,−j

)
where A−i,−j is the matrix A with the i-th row and j-th column eliminated.
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According to the definition above, for a 2× 2 matrix

A =

[
a11 a12
a21 a22

]

its determinant is detA = a11a22 − a12a21.
For a 3× 3 matrix

A =

 a11 a12 a13
a21 a22 a23
a31 a32 a33


its determinant is

det (A) = a11 det

[ a22 a23
a32 a33

]− a12 det

[
a21 a23
a31 a33

]
+ a13 det

[
a21 a22
a31 a32

]
= a11a22a33 − a11a23a32 − a12a21a33 + a12a23a31 + a13a21a32 − a13a22a31

For a 4× 4 matrix A, we should expect that det (A) has 4! = 24 terms, and so we don’t bother
to write it down here.

In the inductive definition of determinants above, the induction formula

det (A) :=
n∑

j=1

(−1)1+j a1j det
(
A−1,−j

)
is also called the cofactor expansion of A along the first row. The (i, j)-th cofactor of a square
matrix A, denoted as Aij , is defined as

Aij := (−1)i+j det
(
A−i,−j

)
and so the cofactor expansion of A along the first row can be rewritten as

det (A) :=

n∑
j=1

a1jA1j

In fact, we can equivalently define determinants by expanding along any row or column, i.e.

det (A) :=

n∑
j=1

aijAij

for any arbitrary row i, or

det (A) :=
n∑

i=1

aijAij

for any arbitrary column j. Let’s admit the equivalence of different ways of expansion without
providing a proof.

Using this equivalence of expanding along a row or a column, we can show that det
(
AT
)
=

det (A).
We also state the following two results without proof.
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Theorem 3.19. Let n be an integer and consider the determinant function, taking n vectors of Rn

as argument det : Rn × ...× Rn 7→ R

1. det(In) = 1.

2. The determinant of a triangular (this includes diagonal) matrix A = (aij) is the product of its
diagonal elements det(A) =

∏n
i=1 aii.

3. Multilinearity: det is linear with respect to each of its argument:

∀k = 1...n,det(A1, ..., λAk + µAk′ , ..., An) = λ det(A1, ..., Ak, ..., An) + µ det(A1, ..., Ak′ , ..., An)

4. If any two columns of A are equal, then det(A) = 0.

5. Antisymmetry: If two columns of A are interchanged, then the determinant changes by a
sign.

6. If one adds a scalar multiple of one column to another then the determinant does not change.

Theorem 3.20. (1) A matrix and its transpose have the same determinant: det(A′) = det(A).
(Equivalently, n vectors A1, ..., An of Rn are linearly independent iff det(A1, ..., An) ̸= 0.)

(2) A square matrix A is invertible iff det (A) ̸= 0.
(3) For two n× n matrices, we have det (AB) = det (A) det (B).

Clearly, the theorem above implies that det
(
A−1

)
=
(
det (A)

)−1
for an invertible matrix A.

4 Systems of Linear Equations

Consider the following system of linear equations in x:
a11x1 + a12x2 + · · ·+ a1nxn = b1
a21x1 + a22x2 + · · ·+ a2nxn = b2

...
am1x1 + am2x2 + · · ·+ amnxn = bm

where aij ’s and bi’s are all elements of R, and the unknowns x1, . . . , xn also take values in R.
We can rewrite the system of linear equations in a compact way by

Ax = b

where A =
(
aij
)
is the m× n matrix, b = (b1, . . . , bm)T , and x = (x1, . . . , xn)

T .
If we view x as a column transformation of the columns of A, then the equation asks us to find

ways to represent the vector b ∈ Rm as a linear combination of the columns of A. To clearly see this,
write matrix A as A = (a1,a2, ...,an), where ai is the ith column of A, we have (a1,a2, ...,an)x =
(a1,a2, ...,an) (x1, . . . , xn)

T = x1a1 + x2a2 + ...+ xnan.

Proposition 4.1. The system of equations Ax = b (A is an m× n matrix over R) has a solution
iff

Rank
([

A|b
])

= Rank (A).

When the system has a solution,
(1) the solution is unique iff the columns of A are linearly independent, i.e. Rank (A) = n.
(2) the system has infinitely many solutions iff Rank (A) < n.
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To see this, suppose Rank (A) = n, then the columns of A are linearly independent, and therefore
their linear representation of b is unique. On the other hand, suppose Rank (A) < n, then the
columns of A are linearly dependent. Therefore, they have a non-trivial linear representation of the
zero vector, i.e. there exists 𭟋 ∈ Rn\ {0} s.t. Az = 0. Then if x∗ is a solution to the system, then
x∗ + λz is also a solution, for any λ ∈ R, and so the solution is not unique.

Proposition 4.2 (General solution of a linear equation). Let a vector x∗ satisfy the equation
Ax∗ = b, and let H := {z : Az = 0}. Then the set {x = x∗+xh : xh ∈ H} is the set of all solutions
of the equation Ax = b.

The system of linear equations can be solved by hand using Gauss-Jordan elimination, which is
essentially row operations of the matrix

[
A|b
]
. You may refer to a standard linear algebra textbook

for details.
As a special case, when m = n and the square matrix A is invertible, the unique solution is

clearly x∗ = A−1b. We also have an explicit formula for x∗ = A−1b, which is known as Cramer’s
rule. Let’s state it without proof.

Theorem 4.3 (Cramer’s Rule). Let A be an n × n invertible matrix and b be an n × 1 column
vector. The i-th entry of the n× 1 column vector x∗ := A−1b can be calculated as

x∗i =
det (Ai)

det (A)

for each i, where Ai is the n× n matrix formed by replacing the i-th column of A by b and leaving
the other columns unchanged.

However, calculating determinants is numerically difficult when the size of the matrices is large,
since the determinant of an n× n matrix has n! terms. So Cramer’s rule may not be as useful as it
seems.

5 Eigenvalues, Eigenvectors, and Diagonalization

5.1 Eigenvalues and Eigenvectors

The concept of eigenvalues is especially important in linear dynamic systems.

Definition 5.1. Let A be an n× n matrix over C. A scalar λ ∈ C is said to be an eigenvalue of
A iff ∃ x ∈ Cn\ {0} s.t. Ax = λx. A vector x ∈ Cn\ {0} is said to be an eigenvector of A iff
∃ λ ∈ C s.t. Ax = λx.

Proposition 5.2. λ ∈ C is an eigenvalue of A iff det (λIn −A) = 0.

By definition, λ ∈ C is an eigenvalue of A iff Ax = λx has a nonzero solution. This is equivalent
to (A− λIn)x = 0 having a nonzero solution, which is in turn equivalent to the columns of the
matrix λIn −A being linearly dependent, which is in turn equivalent to det (λIn −A) = 0.

In the determinant of the matrix

λIn −A =


λ− a11 −a12 · · · −a1n
−a21 λ− a22 · · · −a2n
...

...
...

−an1 −an2 · · · λ− ann


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the diagonal contributes a term λn, and all other terms have a degree no more than n−2. Therefore,
det (λIn −A) is a polynomial of λ of degree n. The polynomial PA (λ) := det (λIn −A) is also called
the characteristic polynomial of A. By construction, λ ∈ C is an eigenvalue of A iff PA (λ) = 0.

Theorem 5.3 (Fundamental Theorem of Algebra). Let P : C → C be a polynomial of degree n, i.e.
P (λ) = cnλ

n + cn−1λ
n−1 + · · · + c1λ + c0, where ck ∈ C for any k = 0, 1, . . . , n and cn ̸= 0. Then

P has exactly n roots in C, counted with multiplicity. That is, there exists λ1, λ2, . . . , λn ∈ C s.t.

P (λ) = cn (λ− λ1) (λ− λ2) · · · (λ− λn)

Therefore, we can obtain all eigenvalues of A by setting the characteristic polynomial of A to 0
and solving for all its roots.

Proposition 5.4. Let A be an n × n matrix over C and λ1, λ2, ..., λn ∈ C are eigenvalues of A.
The the characteristic function polynomial of A:

PA(λ) = (λ− λ1)(λ− λ2)...(λ− λn).

Corollary 5.5. Let A be an n×n matrix over C and λ1, λ2, ..., λn ∈ C are eigenvalues of A. Then
det(A) = λ1λ2...λn.

Proof. Plug λ = 0 in PA (λ) = det (λIn −A), we have det(−A) = (−1)n det(A) = (0 − λ1)(0 −
λ2)...(0− λn) = (−1)nλ1λ2...λn.

Suppose we have established that λ ∈ C is an eigenvalue of A. Then we can obtain the set of
all eigenvectors associated with λ by solving for all nonzero solutions in Cn to the system of linear
equations (A− λIn)x = 0.

5.2 Diagonalization

Definition 5.6. Let A be an n×n matrix over C. The matrix A is diagonalizable in C iff there
exists an n×n invertible matrix P over C and an n×n diagonal matrix Λ over C s.t. P−1AP = Λ.
The matrix A is diagonalizable in R iff there exists an n × n invertible real matrix P and an
n× n diagonal real matrix Λ s.t. P−1AP = Λ.

Intuitively, the matrix A is diagonalizable iff we can find invertible matrix P s.t. we can trans-
form A into some diagonal matrix by left-multiplying A by P−1 and right-multiplying A by P .

If A can be diagonalized as Λ using P , then

det (λIn −A) = det
(
P−1

)
det (λIn −A) det (P ) = det

[
P−1 (λIn −A)P

]
= det

(
λIn − P−1AP

)
= det (λIn − Λ)

= (λ− λ1) (λ− λ2) · · · (λ− λn)

where λ1, λ2, . . . , λn are the n entries on the diagonal of the matrix Λ. Therefore, the entries on the
diagonal of Λ must be the n eigenvalues of A.

When a matrix A is diagonalizable, i.e. P−1AP = Λ, we have

A =
(
PP−1

)
A
(
PP−1

)
= P

(
P−1AP

)
P−1 = PΛP−1

and so the matrix A can be decomposed as PΛP−1.
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Not all matrices are diagonalizable. For example, consider the matrix

A =

[
0 1
0 0

]

It is straightforward to see that the two eigenvalues of A are both 0. So if A can be diagonalized as
Λ under P , i.e. P−1AP = Λ, the diagonal matrix Λ must be the 2× 2 zero matrix. Then we have
A = PΛP−1 = 0. Contradiction.

The next proposition establishes a necessary and sufficient characterization of diagonalizable
matrices.

Proposition 5.7. Let A be an n × n matrix over C. Then A is diagonalizable in C iff A has n
linearly independent eigenvectors.

Proof. ⇐:
Let x1,x2, . . . ,xn ∈ Cn\ {0} be the n linearly independent eigenvectors of A, and let the corre-

sponding eigenvalues be λ1, λ2, . . . , λn ∈ C. By definition, we have Axi = λixi for each i. Therefore,

A [x1,x2, . . . ,xn] = [Ax1, Ax2, . . . , Axn]

= [λ1x1, λ2x2, . . . , λnxn]

= [x1,x2, . . . ,xn]


λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn


Let P := [x1,x2, . . . ,xn] and

Λ :=


λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn


we have AP = PΛ. Because x1,x2, . . . ,xn are linearly independent, the matrix P is invertible.
Therefore, we have P−1AP = P−1PΛ = Λ, and so A is diagonalizable.

⇒:
Because A is diagonalizable, there exists invertible P and diagonal Λ s.t. P−1AP = Λ. Rewrite

the equality as AP = PΛ, i.e.

A [x1,x2, . . . ,xn] = [x1,x2, . . . ,xn]


λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn


where x1,x2, . . . ,xn are columns of P and λ1, λ2, . . . , λn are entries on the diagonal of Λ. Then for
each i, we have Axi = λixi. Because P is invertible, x1,x2, . . . ,xn are not the zero vector, and
therefore x1,x2, . . . ,xn are eigenvectors. Again by invertibility of P , we know that x1,x2, . . . ,xn are
linearly independent.
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The next proposition states that if an n× n matrix A has n distinct eigenvalues, then it has n
linearly independent eigenvectors.

Proposition 5.8. Let A be an n× n matrix over C with n distinct eigenvalues λ1, λ2, . . . , λn ∈ C.
Let x1,x2, . . . ,xn ∈ Cn\ {0} be the corresponding eigenvectors. Then x1,x2, . . . ,xn are linearly
independent.

Let’s show a weaker version of the proposition: the eigenvectors x1 and x2 are linearly inde-
pendent if the corresponding λ1 and λ2 are distinct. To see this, suppose x1 and x2 are linearly
dependent, i.e. there exists k1, k2 ∈ C s.t. at least one is not 0 and k1x1 + k2x2 = 0. Clearly,
because x1 ̸= 0 and x2 ̸= 0, we have k1 ̸= 0 and k2 ̸= 0, since if one of ki is 0 then the other is also
0. Therefore,

Ax1 = λ1x1 = λ1

(
−k2/k1 · x2

)
= −k2λ1/k1 · x2

and
Ax1 = A

(
−k2/k1 · x2

)
= −k2/k1 ·Ax2 = −k2λ2/k1 · x2

Comparing the two equations above, we have (λ1 − λ2) k2/k1 · x2 = 0. Because x2 ̸= 0 and k2 ̸= 0,
we have λ1 = λ2, which contradicts the assumption that λ1 and λ2 are distinct.

The argument above only proves the proposition when n = 2, but we should expect the proof
for the general statement to be similar. Let’s skip the proof for the general statement and admit
the result.

Combining the two propositions above, we have the following theorem.

Theorem 5.9. Let A be an n × n matrix over C with n distinct eigenvalues λ1, λ2, . . . , λn ∈ C.
Then A is diagonalizable in C.

If the eigenvalues of A are not distinct, we don’t know whether A is diagonalizable or not.
A matrix over field R is called a real matrix. An n × n matrix A is symmetric iff aij = aji

for any i and j. An n × n matrix A over F is orthogonal iff ATA = In. Clearly, the condition
ATA = In means that the columns of A are pairwise orthogonal (w.r.t. dot product) and each have
a norm of 1. The condition ATA = In also implies that A is invertible and A−1 = AT , and the
columns of A are a basis of Fn.

The next theorem states that a real symmetric matrix is always diagonalizable in R, i.e. there
exists a real invertible matrix P and a real diagonal matrix Λ s.t. P−1AP = Λ. This result is a
little involved, and let’s state it without proof.

Theorem 5.10. Let A be an n × n real symmetric matrix. Then all its eigenvalues are real, and
there exists a real orthogonal matrix P and a real diagonal matrix Λ s.t. P−1AP = P TAP = Λ.

For an economist, the motivation for studying eigenvalues, eigenvectors, and diagonalization is
their applications in dynamic models.

Consider a linear dynamic system xt = Axt−1, where xt is an n-dimensional real vector and
A is an n × n real matrix. Clearly we have xt = Atx0. When t is large, it is difficult to analyze
the behavior of xt since calculating At is difficult. With the help of diagonalization, however,
At =

(
PΛP−1

)t
= PΛtP−1, where Λt is easy to calculate since Λ is diagonal. In fact, if all

eigenvalues of A have a modulus strictly less than 1, then Λt → 0 (the n × n zero matrix), and so
xt = PΛtP−1x0 → 0 (the n-dimensional zero vector).

If the dynamic system is not linear, it is a standard practice in macro to log-linearize the dynamic
system around its steady state, which is essentially approximating a non-linear system using a linear
system. Then our discussion on linear dynamic systems above applies.
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6 Quadratic Forms

Definition 6.1. A quadratic form on Rn is a function Q : Rn → R that can be represented by

Q (x) =
n∑

i=1

n∑
j=1

aijxixj

= a11x
2
1 + a22x

2
2 + · · ·+ annx

2
n

+ (a12 + a21)x1x2 + (a13 + a31)x1x3

+ · · ·+
(
an−1,n + an,n−1

)
xn−1xn

where aij’s are real coefficients.

Notice that we can write a quadratic form in a compact way using matrix multiplication. The
quadratic form Q (x) defined above is equal to xTAx, where A =

(
aij
)
is the n × n matrix whose

elements are the coefficients of the quadratic form, and x is considered as a column vector.
The way to represent a quadratic form Q using a matrix A is not unique, since if the matrix A

represents the quadratic form Q, then the matrix A+ B also represents Q for any anti-symmetric
matrix B (i.e. bij = −bji for any i, j). However, each quadratic form Q can be represented by a
unique symmetric matrix A.

Definition 6.2. Let A be an n × n real symmetric matrix. The matrix A, or the quadratic form
Q (x) := xTAx that is represented by A, is said to be

(1) positive definite, iff xTAx > 0 for any x ∈ Rn\ {0};
(2) negative definite, iff xTAx < 0 for any x ∈ Rn\ {0};
(3) positive semi-definite, iff xTAx ≥ 0 for any x ∈ Rn;
(4) negative semi-definite, iff xTAx ≤ 0 for any x ∈ Rn;
(5) indefinite, iff ∃ x,x′ ∈ Rn s.t. xTAx > 0 and x′TAx′ < 0.

The next theorem provides a necessary and sufficient characterization of positive/negative (semi-
)definite matrices using eigenvalues.

Theorem 6.3. Let A be an n× n real symmetric matrix. The matrix A is
(1) positive definite iff all its eigenvalues are positive;
(2) negative definite iff all its eigenvalues are negative;
(3) positive semi-definite iff all its eigenvalues are non-negative;
(4) negative semi-definite iff all its eigenvalues are non-positive;
(5) indefinite iff it has both positive and negative eigenvalues.

This theorem easily follows Theorem 5.10, which allows us to find orthogonal P and diagonal Λ
s.t. P TAP = Λ, since we have

xTAx = xT
(
PΛP T

)
x =

(
P Tx

)T
Λ
(
P Tx

)
= yTΛy =

n∑
i=1

λiy
2
i

where y := P Tx, and λi’s are entries on the diagonal of Λ.
There are some other characterizations of positive/negative (semi-)definiteness using principal

minors. Please refer to FMEA Theorem 1.7.1 and 1.8.1 for details.
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Theorem 6.4 (LDL Decomposition). Let A be an n×n real symmetric matrix. Then A is positive
definite iff there exists a real diagonal matrix D with positive entries on its diagonal and a real lower
triangle matrix2 L with all 1’s on its diagonal, s.t. A = LDLT .

The decomposition A = LDLT in the theorem is called the LDL decomposition of a positive
definite matrix. The ”if” part of the theorem is straightforward, but the ”only if” part is involved.
Let’s admit this result without proof.

In the theorem above, if we define P := L
√
D, where

√
D is the diagonal matrix whose entries

on its diagonal are the square root of the corresponding entries of D, then we have A = PP T . This
is called the Choleski decomposition of the positive definite matrix A.

Theorem 6.5 (Cholesky Decomposition). Let A be an n × n real symmetric matrix. Then A is
positive definite iff there exists a real lower triangle matrix P with all positive entries on its diagonal
s.t. A = PP T .

2An n× n matrix is said to be a lower triangle matrix iff aij = 0 for any i < j.
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