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1 Metric Spaces and Topology

1.1 Distance

In Calculus, the distance d(a, b) between two points a and b of the real line R is given by |a− b|,
while for two vectors x and y of Rn their distance d(x, y) is given by

√∑n
i=1(xi − yi)2. Our aim

in this chapter is to extend the notion of distance to abstract spaces. To this end, the first thing
to observe is that the distance among vectors just mentioned is certainly not the only possible one.
For example, consider two vectors x = (x1, x2) and y = (y1, y2) in the plane R2. Suppose that these
two vectors represent the coordinates of two places in a town with a square plan. The length of the
shortest way for a pedestrian to move between them is certainly not given by

√∑n
i=1(xi − yi)2, that

is, by the length of the segment that joins the points x and y (a segment that could be covered only
by an hypothetical subway joining the two places). Looking at the map, it is easy to see that the
effective distance is given by |x1 − y1| − |x2 − y2|. Formally, given two vectors x, y ∈ Rn, we define
the distance d(x, y) as

∑n
i=1 |xi − yi|. In the case n =2 we find again the “pedestrian” distance

d(x, y) = |x1 − y1| − |x2 − y2| just discussed.
To see another example of distance, suppose that two vectors x and y in Rn denote the allocations

of income in a society composed by n individuals. Therefore, xi is the income that individual i has
under allocation x, while yi is his income under allocation y. How we measure the the “distance”
between the allocations x and y? A possibility is to evaluate the individual differences of income
xi−yi among the two allocations, and to take the quantity max1≤i≤n |xi − yi| as the distance between
the two allocations x and y. In other words, we evaluate the distance between the two allocations
by considering the individual whose income is subject to the greatest variation (in absolute value).
Given two vectors x, y ∈ Rn we define therefore the distance d(x, y) = max1≤i≤n |xi − yi| We try
now to abstract from the particular examples, in order to arrive at a general definition of distance.
We observe that the distances just discussed have the following properties:

• The distance between two vectors is always non-negative: d(x, y) ≥ 0

• Two vectors have zero distance if and only if they coincide: d(x, y) = 0 ⇐⇒ x = y

• The distance between two vectors is symmetric: d(x, y) = d(y, x)

• Given three vectors, the triangular inequality holds: d(x, y) ≤ d(x, z) + d(z, y)

Definition 1.1. Let X be a set. A function d : X2 → R+ is a distance function, or metric, on
X iff it satisfies the following properties

(1) d (x, y) = 0 iff x = y,

(2) Symmetry: d (x, y) = d (y, x), ∀ x, y ∈ X, and

(3) Triangle inequality: d (x, y) ≤ d (x, z) + d (z, y), ∀ x, y, z ∈ X

If d is a metric on X, then the couple (X, d) is called a metric space.

Elements of a metric space are often called points. Note that the distance function d is an
inseparable part of a metric space. (X, d1) and (X, d2) are two different metric spaces if d1 and d2
are two different distance functions. We can denote a metric space simply as X only when there is
no ambiguity regarding what distance function is used.
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As an example, the set Rk can be endowed with a natural metric, the Euclidean distance
function d2, defined as

d2 (x, y) :=

√√√√ k∑
i=1

(xi − yi)
2

for any x, y ∈ Rk. This distance function is natural in the sense that it is consistent with how we
understand ”distance” in our real life where k = 3. Observe that when k = 1, d2(x, y) = |x− y| i.e
we recover the absolute value as our primitive notion of distance in dimension one. We can easily

verify that d2 satisfies properties (1) (2) (3)1. The metric space
(
Rk, d2

)
is often called a Euclidean

space.
Examples of other metrics on Rk:

• dn metric:

dn (x, y) :=

 k∑
i=1

|xi − yi|n
 1

n

where k can be any positive integer2. This subsumes the Euclidean distance d2 as a special
case. Notice that when k = 1, all dn’s reduce to the same absolute distance function d (x, y) :=
|x− y|.

• d∞ metric :

d∞(x, y) = sup
j=1,...,k

|xk − yk|

This extends the dn metric to the case n = ∞.

• discrete metric:

d (x, y) :=

{
0, if x = y
1, if x ̸= y

Given a metric space (X, d) and a subset S ⊂ X, we can restrict ourselves to the subset S to get
a smaller metric space, still using the distance function defined on the larger space X. Formally,
define a new distance function d|S : S2 → R+ as d|S (x, y) := d (x, y) for any x, y ∈ S. That is,
d|S is the original distance function d restricted in the subset S. Clearly, d|S is a valid metric on
S, and so

(
S, d|S

)
is a valid metric space. Sometimes, we write the metric space

(
S, d|S

)
as (S, d)

for simplicity, but keep in mind that rigorously speaking the new metric d in (S, d) has a different
domain from the original metric.

1.2 Open Balls

Definition 1.2. Let (X, d) be a metric space. The open ball centered at x ∈ X with radius r > 0
is defined as the set

Br (x) :=
{
z ∈ X : d (z, x) < r

}

1The triangle inequality can be shown using Cauchy-Schwarz inequality.
2The triangle inequality can be shown using Minkowski inequality.
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Keep in mind that an open ball Br (x) depends both on the whole space X and the distance
function d. For example, in the metric space (R, d2), the open ball B1 (0) = (−1, 1); however, in
(R+, d2), the open ball B1 (0) = [0, 1). If we use the discrete metric d, then in (R, d) the open ball
B1 (0) = {0}. Therefore, when we write down the notation for an open ball like B1 (0), we have to
be clear about which metric space we are working with.

The notations Br(x) or B(x, r) are sometimes used alternatively to denote the open ball of
radius r centered at x.

Definition 1.3. Let (X, d) be a metric space and S be a subset of X. The set S is said to be
bounded iff there exists x ∈ X and r > 0 s.t. Br (x) ⊃ S.

That is, a set S is bounded iff we can bound it using an open ball – in other words, we can
contain the whole set in that ball. This captures the idea that there is a finite maximal distance
between any two points in that set.

1.3 Open sets and closed sets

Definition 1.4. Let (X, d) be a metric space, and S a subset of X.
A point x ∈ X is an interior point of S iff ∃ r > 0 s.t. Br (x) ⊂ S. The set of interior points

of S is denoted as int (S).
The set S is an open set iff S ⊂ int (S), i.e. all points in S are interior points.

Clearly, any interior point of S is a point in S, and therefore, S ⊂ int (S) is equivalent to
S = int (S).

By convention, the empty set ∅ is open, because int
(
∅
)
= ∅. Also, the whole space X is also

open, because int (X) = X. Keep in mind that whether a set is open depends on the metric space.
For example, [0, 1) is not an open set in (R, d2), since 0 is not an interior point. However, [0, 1) is an
open set in (R+, d2). The point 0 becomes an interior point of [0, 1) because an open ball centered
at 0 is now Br (0) = [0, r) instead of (−r, r).

As its name suggests, an open ball is open.

Claim 1.5. In metric space (X, d), any open ball is an open set.

Proof. Take any open ball Br (x) in the metric space. In order to show that the open ball Br (x) is
an open set, we need to show for any z ∈ Br (x), z ∈ int(Br (x)), i.e. ∃ϵ s.t. Bϵ(z) ⊂ Br(x).

Take any point z ∈ Br (x). Let ε := r − d (z, x).
First, because z ∈ Br (x), we have d (z, x) < r and thus ε > 0.
Second, take any y ∈ Bε (z), we have

d (y, x) ≤ d (y, z) + d (z, x) < ε+ d (z, x) = r

and therefore y ∈ Br (x).

Note that open intervals are open in (R, d2), because they are special cases of open balls.
The next proposition is an important property of open sets. It states that an arbitrary union

of open sets is open, and that a finite intersection of open sets is also open.

Proposition 1.6. In metric space (X, d):

(1) Let {Eα}α∈A be an arbitrary family of open sets (potentially uncountably many of them). Then

their union
⋃
α∈A

Eα is also open.
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(2) Let {Ei}ni=1 be a finite family of open sets. Then their intersection
n⋂

i=1

Ei is also open.

Proof. (1) Take any x ∈
⋃
α∈A

Eα, we need to find r > 0 s.t. Br (x) ⊂
⋃
α∈A

Eα.

By definition of union, ∃ α̂ ∈ A s.t. x ∈ Eα̂. Because Eα̂ is open, we can find r > 0 s.t.
Br (x) ⊂ Eα̂.

This is an r we need to find because Br (x) ⊂ Eα̂ ⊂
⋃
α∈A

Eα.

(2) Take any x ∈
n⋂

i=1

Ei, we need to find r > 0 s.t. Br (x) ⊂
n⋂

i=1

Ei.

By definition of intersection, x ∈ Ei for any i = 1, 2, . . . , n. For each i, because Ei is open,
∃ ri > 0 s.t. Bri (x) ⊂ Ei.

Let r := min {r1, r2, . . . , rn}, and this is an r we need to find. First, clearly r > 0. Second,

Br (x) ⊂ Bri (x) ⊂ Ei for any i, and therefore Br (x) ⊂
n⋂

i=1

Ei.

Note that an infinite intersection of open sets may not be open. For example, consider En =(
−1/n, 1/n

)
, and we have

+∞⋂
n=1

En = {0}.

Now let’s move on to closed sets. We give two equivalent definitions.

Definition 1.7. Let (X, d) be a metric space, and S a subset of X; denote by Sc := X \ S its
complement. We say that S is closed is Sc is open.

Remark 1.8. In this lecture, we consider only metric topology : we first a metric space, and this
induces a topology (i.e open and closed sets) through the metric we chose. This is not the only way
to define a topology. In general abstract topology, the approach is actually diametrically reversed :
we start from the fundamental data of the class of open sets (which sets are defined as open) and
build from there. This is where the canonical (and probably simplest) definition of closed sets as the
complements of open sets comes from.

A corollary of is that S is an open set iff Sc is a closed set. Simply put, the complement of an
open set is closed, and the complement of a closed set is open.The next definition of closed sets is
equivalent to the previous one (in the context of metric spaces).

Definition 1.9. Let (X, d) be a metric space, and S a subset of X.
A point x ∈ X is a limit point of S iff

(
Br (x) \ {x}

)
∩ S ̸= ∅, ∀ r > 0. The set of limit points

of S is denoted as S′.
The set S is a closed set iff S ⊃ S′, i.e. S contains all of its limit points.

The condition ”
(
Br (x) \ {x}

)
∩S ̸= ∅, ∀ r > 0” states that the open ball Br (x) with the center

removed always contains some points in the set S, no matter how small the radius r is. That is, a
point x is a limit point of S iff we can use points in S to approximate x arbitrarily well (the point
x itself may be a point in S, but we are not allowed to use x to approximate itself).

Notice that not every point in S is necessarily a limit point, and so S ⊃ S′ is not equivalent to
S = S′. For example in (R, d2), the ”isolated” point 2 in the set S = [0, 1]∪ {2} is not a limit point
of S. The set S is indeed closed by definition, since S′ = [0, 1] which is a proper subset of S.
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Exercise 1.10. Prove that the two definitions above for closed sets are equivalent.

By convention, the empty set ∅ is closed, because ∅′ = ∅. Also, the whole space X is also closed,
because a limit point of X, by definition, must be a point in X in the first place. Keep in mind
that whether a set is closed depends on the metric space. For example, (0, 1] is not a closed set in
(R, d2), since it does not contain its limit point 0. However, (0, 1] is a closed set in (R++, d2). The
point 0 is no longer a limit point of (0, 1], since it is not even a point because it is not in the metric
space.

The following proposition establishes a third characterization of closed sets : the sequential
characterization (this anticipates slightly on the next section, but we have already seen sequences
in the previous lecture).

Proposition 1.11. Let (X, d) be a metric space, and S a subset of X. Then the following two
statements are equivalent.

(1) S is a closed set.

(2) (sequential definition) For any sequence (xn) in S convergent to some point x ∈ X, we have
x ∈ S.

Proof. ⇒ :
Take any sequence (xn) in S convergent to x ∈ X, WTS x ∈ S.
Suppose that x /∈ S, WTS x ∈ S′.
Take any r > 0. Because xn → x, ∃ n s.t. xn ∈ Br (x). Because xn ∈ S but x /∈ S, we

know that xn ̸= x, and thus xn ∈ Br (x) \ {x}. Therefore, xn ∈
(
Br (x) \ {x}

)
∩ S, which implies(

Br (x) \ {x}
)
∩ S ̸= ∅.

So we have shown that x ∈ S′.
Because S is closed, we have x ∈ S′ ⊂ S, which contradicts the hypothesis x /∈ S we started

with.
Therefore, it must be the case that x ∈ S.
⇐ :
Take any x ∈ Sc. We want to find r > 0 s.t. Br (x) ⊂ Sc.
Suppose that we cannot find such r, then for any n ∈ N, we have B1/n (x) ̸⊂ Sc. Then for each

n, there exists xn ∈ B1/n (x) s.t. xn ∈ S. Clearly, xn → x because for any ε > 0, we can let N be
some number greater than 1/ε, and then for any n > N , we have d (xn, x) < 1/n < 1/N < ε.

Hence we have x ∈ S, which contradicts x ∈ Sc.

The next proposition is an important property of closed sets. It states that an arbitrary inter-
section of closed sets is closed, and that a finite union of closed sets is also closed.

Proposition 1.12. In metric space (X, d):
(1) Let {Fα}α∈A be an arbitrary family of closed sets (potentially uncountably many of them).

Then their intersection
⋂
α∈A

Fα is also closed.

(2) Let {Fi}ni=1 be a finite family of closed sets. Then their union

n⋃
i=1

Fi is also closed.

The proposition above is simply a corollary of Proposition 1.6, using De Morgan’s law and the
fact that the complement of an open set is closed. This is left as an exercise.

As a final note, again keep in mind that open sets and closed sets are not ”absolute” concepts.
They rely on the metric space we are working with. When there is ambiguity regarding which
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metric space we are using, we have to be explicit about it by saying ”set S is open/closed in the
metric space (X, d)” instead of simply saying ”S is open/closed”. Also, notice that under discrete
metric, all sets in the metric space are both open and closed (exercise).

Please use the following examples to check your understanding of open sets and closed sets.

[0,+∞) (0,+∞)
{
1/n : n ∈ N

}
In (R, d2) not open, but closed open, not closed not open, not closed

In (R+, d2) open and closed open, not closed not open, not closed

In (R++, d2) NA open and closed not open, but closed

2 Sequences and Convergence

2.1 General Definitions

Definition 2.1. Let X be a set. The function x : N → X is called a sequence in X.

Sequences are simply a special case of functions. The value of the function x evaluated at 1,
x (1), is called the first term of the sequence, and the value of the function evaluated at 2, x (2),
is called the second term, and so on. By convention, we often use subscripts and write x1, x2, . . .
instead of x (1) , x (2) , . . ., and the whole sequence is often denoted as (xn) instead of x.

Note that there is no distance function involved in the definition above, since we don’t need a
concept of distance to talk about sequences. However, we do need distance to talk about conver-
gence.

Definition 2.2. Let (X, d) be a metric space. A sequence (xn) in X is said to converge to a point
x ∈ X, iff ∀ ε > 0, ∃ N ∈ N s.t. d (xn, x) < ε for all n > N .

When the sequence (xn) converges to x, the point x is called a limit of the sequence (xn), and
we use the notation xn → x or limn→∞ xn = x.

Notice that the requirement d (xn, x) < ε is equivalent to xn ∈ Bε (x). Another way to describe
convergence is that the sequence (xn) will eventually go into the open ball Bε (x), no matter how
small the ball is.

The next claim establishes that the limit of a convergent sequence must be unique, and therefore
it makes sense to talk about ”the” limit of a convergent sequence.

Claim 2.3. Let (X, d) be a metric space. Suppose xn → x and xn → x′, then x = x′.

Proof. We prove this claim by contradiction.
Suppose x ̸= x′. By property (1) of d, we have d

(
x, x′

)
> 0.

Let ε := d
(
x, x′

)
/2. Because xn → x, there exists N s.t. d (xn, x) < ε for any n > N . Because

xn → x′, there exists N ′ s.t. d
(
xn, x

′) < ε for any n > N ′. Let n̂ := max
{
N,N ′} + 1, and so we

have n̂ > N and n̂ > N ′. Therefore, we have d (xn̂, x) < ε and d
(
xn̂, x

′) < ε, and thus

d (xn̂, x) + d
(
xn̂, x

′) < 2ε = d
(
x, x′

)
which contradicts triangle inequality of d.

Therefore we must have x = x′.

A sequence is said to be bounded iff its range {x1, x2, . . .} is a bounded set. The next claim
establishes that a convergent sequence must be bounded.
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Claim 2.4. Let (X, d) be a metric space. If (xn) is a convergent sequence in X, then (xn) must be
bounded.

Proof. Let the limit of (xn) be x. Let ε = 1, and by definition of convergence, there exists N s.t.
d (xn, x) < 1 for any n > N . Then let

r := max
{
d (x1, x) , d (x2, x) , . . . , d (xN , x)

}
+ 1

Then clearly we have Br (x) ⊃ {x1, x2, . . .}.

The trick of this proof is to cut the sequence into a ”head” and a ”tail”. Then we use convergence
to bound the tail, and the head is automatically bounded because it has finitely many terms.

The discussion above applies to general metric spaces. The next subsection is dedicated to an
important special case, the Euclidean spaces, and establishes some more results on convergence in
Euclidean spaces.

2.2 Convergence in Euclidean Spaces

The next claim states that in R the ≤ relation is preserved in the limit.

Claim 2.5. In (R, d2), let there be two convergent sequences xn → x and yn → y. If xn ≤ yn for
any n ∈ N, then x ≤ y.

We can prove this claim by contradiction, and this is left as an exercise. Also note that this is
not true if we replace ≤ by <, since for example, xn = −1/n and yn = 1/n.

The next proposition states that a sequence of vectors converges to a limit vector iff each
coordinate converges separately.

Proposition 2.6. Let (xn) be a sequence in
(
Rk, d2

)
. The sequence (xn) converges to x ∈ Rk iff

the sequence
(
xin

)
converges to xi in (R, d2) for any i ∈ {1, 2, . . . , k}.

Here we use superscript to index coordinates of vectors, since we have used subscript to index
terms of the sequences.

Proof. ⇒:
Take any i ∈ {1, 2, . . . , k}. WTS: xin → xi in (R, d2).
Take any ε > 0, we want to find N i s.t. d2

(
xin, x

i
)
< ε for any n > N i.

Because xn → x, there exists N s.t. d2 (xn, x) < ε for any n > N . Let N i := N , and I claim
that this is an N i we need to find. This is because for any n > N i := N , we have

d2

(
xin, x

i
)
=

∣∣∣xin − xi
∣∣∣ = √(

xin − xi
)2

≤

√√√√ k∑
j=1

(
xjn − xj

)2
= d2 (xn, x) < ε

⇐:
Take any ε > 0, we want to find N s.t. d2 (xn, x) < ε for any n > N .
Because xin → xi, there exists N i s.t. d2

(
xin, x

i
)

< ε/
√
k for any n > N i. Let N :=

max {N1, . . . , Nk}, and I claim that this is an N we want to find. This is because for any n > N ,
we have n > N i and thus d2

(
xin, x

i
)
< ε/

√
k for any i, and therefore

d2 (xn, x) =

√√√√ k∑
j=1

(
xjn − xj

)2
<

√
k
(
ε/
√
k
)2

= ε
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The following proposition and its corollary state that the operators +, −, ×, and / preserves
limit in R.

Proposition 2.7. In (R, d2), let there be two convergent sequences xn → x and yn → y. Then
(1) xn + yn → x+ y,
(2) xnyn → xy, and
(3) if x ̸= 0, then 1/xn → 1/x

Proof. Let’s prove (2), and leave (1) and (3) as exercises.
Take any ε > 0, I want to find N s.t. |xnyn − xy| < ε for any n > N .
Because (yn) is convergent, it is bounded, i.e. there exists an open ball (z − r, z + r) that

contains {y1, y2, . . .}. Let M := max
{
|z − r| , |z + r|

}
, and by construction |yn| < M for any n.

Because xn → x, there exists Nx s.t. |xn − x| < ε/2M . Because yn → y, there exists Ny s.t.
|yn − y| < ε/2

(
|x|+ 1

)
.

Let N := max
{
Nx, Ny

}
, and I claim that this is an N we need to find. This is because for any

n > N , we have

|xnyn − xy| =
∣∣(xn − x) yn + (yn − y)x

∣∣
≤ |xn − x| · |yn|+ |yn − y| · |x|

<
ε

2M
·M +

ε

2
(
|x|+ 1

) · |x|

<
ε

2
+

ε

2
= ε

Corollary 2.8. In (R, d2), consider two convergent sequences xn → x and yn → y. Then

1. xn − yn → x− y,

2. if y ̸= 0, then xn/yn → x/y

Proof. 1. Clearly, the constant sequence zn := −1 converges to z = −1. Therefore, by Proposi-
tion 2.7(2), we have znyn → zy. So

−yn = znyn → zy = −y

By Proposition 2.7(1), we have

xn − yn = xn + (−yn) → x+ (−y) = x− y

2. By Proposition 2.7(3), we have 1/yn → 1/y. Then by Proposition 2.7(2), we have

xn/yn = xn ·
(
1/yn

)
→ x ·

(
1/y

)
= x/y

When we combine Proposition 2.7 with Proposition 2.6, we can obtain similar results for con-

vergence of vectors. For example, if xn → x and yn → y in
(
Rk, d2

)
, then we have xn + yn → x+ y

in
(
Rk, d2

)
.
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2.3 Monotone Convergence and Bolzano-Weierstrass Theorem

Because sequences are special cases of functions, the definition of monotonicity of functions applies
to sequences. A sequence is increasing iff xm ≤ xn for any m ≤ n; is decreasing iff xm ≥ xn for
any m ≤ n; is monotone iff it is increasing or decreasing. We can also define the strict versions of
increasing/decreasing sequences in the natural way as we did for functions.

Now let’s use the least upper bound property of R to prove the following important theorem.

Theorem 2.9 (Monotone Convergence Theorem). Every increasing (resp. decreasing) and bounded
from above (resp. below) real sequence (xn) is convergent in (R, d2).

Notice that an increasing/decreasing sequence is automatically bounded from below/above by
its first term. Therefore, the theorem can also be stated that every monotone and bounded real
sequence is convergent in (R, d2).

Proof. (1) Take any increasing and bounded from above real sequence (xn). Because the range
of the sequence {x1, x2, . . .} is bounded from above, by l.u.b. property of R, it has a least upper
bound.

Let x := sup {x1, x2, . . .}, and we WTS xn → x.
Take any ε > 0. We want to find N s.t. |xn − x| < ε for any n > N . Because x is the least upper

bound of {x1, x2, . . .}, x − ε is not an upper bound, and therefore there exists N s.t. xN > x − ε.
Therefore, for any n > N , we have

x ≥ xn ≥ xN > x− ε

and therefore |xn − x| < ε.
(2) Take any decreasing and bounded from below real sequence (xn). Clearly (−xn) is increasing

and bounded from above. By (1) we have (−xn) is convergent, and thus (xn) is also convergent.

Given a sequence (xn), a subsequence of (xn) is a sequence
(
xnk

)
indexed by k ∈ N, where

(nk) is a strictly increasing sequence in N. For example, if the sequence (nk) is 2, 4, 5, 9, . . ., then
the subsequence

(
xnk

)
is x2, x4, x5, x9, . . ..

Lemma 2.10. Every sequence in R has a monotone subsequence.

Proof. Take any sequence (xn) in R. Call the term xn a dominant term if xn ≥ xm for any m ≥ n.
Case 1: (xn) has infinitely many dominant terms
Then these dominant terms constitute a decreasing subsequence.
Case 2: (xn) has finitely many dominant terms
Let xN be the last dominant term. Let n1 = N + 1, and so xn1 is not a dominant term. By

definition, there exists n2 > n1 s.t. xn2 > xn1 . The term xn2 itself is not dominant either, and so
there exists n3 > n2 s.t. xn3 > xn2 ... Therefore, we obtain a strictly increasing subsequence.

Case 3: (xn) has no dominant term
Let n1 = 1, and construct a strictly increasing subsequence as in Case 2.
Therefore, we can always find a monotone subsequence.

If we combine the lemma we have just proved with Monotone Convergence Theorem, we im-
mediately obtain the Bolzano-Weierstrass theorem: every bounded sequence in (R, d2) has a
convergent subsequence.

We can easily extend Bolzano-Weierstrass theorem to
(
Rk, d2

)
. So we have proved the following

theorem.
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Theorem 2.11 (Bolzano-Weierstrass). Every bounded sequence in
(
Rk, d2

)
has a convergent sub-

sequence.

Proof. (sketch)

Take any bounded vector sequence in
(
Rk, d2

)
. Clearly, each of its coordinate is a bounded real

sequence in (R, d2). Then we can apply Bolzano-Weierstrass theorem in (R, d2) to find a convergent
subsequence for the first coordinate. Then we can find a subsequence of this subsequence that is
convergent in the second coordinate. Repeat this process, and we finally obtain a subsequence that is
convergent in every coordinate. By Proposition 2.6, the subsequence for the vector is convergent.

3 Compactness

Compactness is a stronger notion than closedness. It is also a crucial concept, because compact sets
have many desirable properties that closed sets don’t have.

Definition 3.1. Let (X, d) be a metric space, and S a subset of X. A family of open sets {Eα}α∈A
is an open cover of S iff

⋃
α∈A

Eα ⊃ S.

Definition 3.2. Let (X, d) be a metric space, and S a subset of X. The set S is compact iff ∀
open cover {Eα}α∈A of S, ∃ a finite B ⊂ A s.t. {Eα}α∈B is also an open cover of S.

To illustrate the definition of compact sets, let’s verify that the open interval (0, 1) is not a
compact set in (R, d2). To do this, it is sufficient to provide an open cover that does not have a

finite subcover. Consider the family of open sets
{(

1/n, 1− 1/n
)}+∞

n=3
. This covers (0, 1) because

any point strictly between 0 and 1 will be eventually covered by
(
1/n, 1− 1/n

)
when n is large

enough. There is no finite subcover, since any finite family of
(
1/n, 1− 1/n

)
has a largest one, and

it does not cover (0, 1).
By definition, the concept of compactness relies on the metric space we are working with, just

like openness and closedness. A set can be compact in one metric space, but not in another metric
space. However, compactness behaves much better than openness and closedness, in the sense that
enlarging or shrinking the whole space does not affect compactness as long as we use the same
metric. This result is formulated below.

Proposition 3.3. Let (X, d) be a metric space, and S ⊂ Y ⊂ X. Then S is compact in (X, d) iff
S is compact in (Y, d).

Recall that (Y, d) in fact means
(
Y, d|Y

)
, rigorously speaking.

See Theorem 2.33 in Rudin for a proof.
In the proposition above, if we let Y := S, we have that S is compact in (X, d) iff S is compact

in (S, d). A metric space (X, d) is said to be a compact metric space iff X is a compact set in
(X, d). So we know that if S is compact in (X, d), then (S, d) itself is a compact metric space, and
vice versa.

3.1 General Properties

The theorem below states that compactness is stronger than closedness.

Theorem 3.4. Let (X, d) be a metric space, and S a subset of X. If S is compact in (X, d), then
S is closed in (X, d).
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Proof. WTS: Sc is open in (X, d)
Take any x ∈ Sc, we want to find r > 0 s.t. Br (x) ⊂ Sc.
Take any y ∈ S, let ry := d (y, x) /2. Then clearly Bry (x) and Bry (y) are disjoint.
Notice that

{
Bry (y)

}
y∈S is an open cover of S. By compactness of S, there exists {y1, y2, . . . , yn}

s.t.
{
Bryi

(yi)
}n

i=1
is also an open cover of S.

Let r := min
{
ry1 , ry2 , . . . , ryn

}
. WTS: Br (x) ⊂ Sc.

Clearly Br (x) is disjoint with Bryi
(yi) for any i. So Br (x) is disjoint with the union of Bryi

(yi)’s,
and thus Br (x) is disjoint with S, which implies Br (x) ⊂ Sc.

The next theorem states that a compact set must be bounded.

Theorem 3.5. Let (X, d) be a metric space, and S a subset of X. If S is compact in (X, d), then
S is bounded in (X, d).

Proof. Arbitrarily take a point x ∈ X. Clearly,
{
Bn (x)

}∞
n=1

is an open cover of S, because any
y ∈ X has a finite distance to x, and will be eventually covered by Bn (x) when n is large enough.

By compactness of S, there exists {n1, n2, . . . , nk} s.t.
{
Bni (x)

}k

i=1
is also an open cover of S.

Let r := max {n1, n2, . . . , nk}. Then Br (x) ⊃ S, and so S is bounded.

Combining the Theorem 3.4 and 3.5, we conclude that a compact set must be closed and
bounded.

The next theorem provides a way to prove compactness. It states that a closed set contained in
a compact set is also compact. Therefore, in order to show that S is compact, we can instead show
that S is closed and that some other set containing S is compact.

Theorem 3.6. Let (X, d) be a metric space, and S ⊂ Y ⊂ X. If S is closed in (X, d) and Y is
compact in (X, d), then S is compact in (X, d).

Proof. Take any open cover {Eα}α∈A of S. We want to find a finite family chosen from {Eα}α∈A
that also covers S.

Clearly, {Eα}α∈A ∪ {Sc} covers the whole space, and thus covers Y . Because Y is compact,
there exists a finite family chosen from {Eα}α∈A ∪ {Sc} that covers Y . Because S ⊂ Y , the finite
family also covers S. If the finite family contains Sc, then we can remove it from the family, then
the family still covers S, since Sc has no contribution to covering S. So we have obtained a finite
family chosen from {Eα}α∈A that covers S.

Theorem 3.4 and 3.6 together implies that in compact metric spaces, closedness and compactness
are equivalent.

The discussions above apply to general metric spaces. The next subsection is dedicated to

Euclidean spaces
(
Rk, d2

)
, and establishes more results.

3.2 Heine-Borel Theorem in
(
Rk, d2

)
In general metric spaces, we have shown that a compact set must be closed and bounded. In

Euclidean spaces
(
Rk, d2

)
, the reverse is also true, i.e. a closed and bounded set in

(
Rk, d2

)
must be compact. Therefore, in Euclidean spaces, compactness is equivalent to closedness plus
boundedness, and this equivalence is known as Heine-Borel theorem.

We establish this result in several steps.

Lemma 3.7. Any closed interval [a, b] is compact in (R, d2).
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Proof. Take any closed interval [a, b], and suppose that it is not compact. Then there exists an
open cover {Eα}α∈A of [a, b] without a finite subcover.

Let a0 := a, and b0 := b.
Cut the interval [a0, b0] in half:

[
a0, (a0 + b0) /2

]
and

[
(a0 + b0) /2, b0

]
. At least one of them

cannot be finitely covered (otherwise the interval [a0, b0] can be finitely covered). Take the one that
cannot be finitely covered, and label it as [a1, b1].

Cut the interval [a1, b1] in half:
[
a1, (a1 + b1) /2

]
and

[
(a1 + b1) /2, b1

]
. At least one of them

cannot be finitely covered. Take the one that cannot be finitely covered, and label it as [a2, b2].
Repeat this process, and we get a shrinking sequence of intervals [a0, b0] ⊃ [a1, b1] ⊃ · · · , and

each of them cannot be finitely covered using the open cover {Eα}α∈A.
Because (an) is increasing and bounded from above by b0, (an) converges to some limit a∗.

Symmetrically, (bn) converges to some limit b∗. Because bn − an =
(
1/2

)n
(b− a) → 0, we know

that
bn = an + (bn − an) → a∗ + 0 = a∗

and therefore b∗ = a∗. That is, the sequence of intervals [a0, b0] ⊃ [a1, b1] ⊃ · · · shrinks to one point
a∗. Because a∗ ∈ [a, b], it is covered by some open set Eα∗ in the open cover.

Therefore, there exists Br (a
∗) ⊂ Eα∗ . Because (an) and (bn) both converge to a∗, there exists

n̂ s.t. an̂, bn̂ ∈ Br (a
∗), and therefore [an̂, bn̂] ⊂ Br (a

∗) ⊂ Eα∗ . So [an̂, bn̂] can be finitely covered
using the open cover {Eα}α∈A, which contradicts the construction of the sequence

(
[an, bn]

)
.

It is not difficult to extend the lemma to
(
Rk, d2

)
.

Lemma 3.8. Every k-cell [a1, b1]× [a2, b2]× · · · × [ak, bk] is compact in
(
Rk, d2

)
.

We can use the same idea to prove this result for Rk as that for R. Take any k-cell, and
suppose that it is not compact. Then there exists an open cover {Eα}α∈A of the cell without a
finite subcover. Then in each coordinate of the k-cell, we cut the interval in half, and in total we get
2k sub-cells. At least one of them cannot be finitely covered. Take the one that cannot be finitely
covered, and cut it into 2k sub-cells, and repeat this process. We can get a shrinking sequence of
k-cells, each of whom cannot be finitely covered. It can be shown that the sequence shrinks to one
limit point x∗ in the original k-cell. Then let the open set in {Eα}α∈A that covers x∗ be Eα∗ . It can
be shown that the sequence of k-cells will eventually go into Eα∗ , and thus can be finitely covered.
This contradicts the construction of this sequence. See Theorem 2.40 in Rudin for details.

Now let’s consider a closed and bounded set S in
(
Rk, d2

)
. By definition of boundedness, S can

be bounded by an open ball. Clearly, an open ball in
(
Rk, d2

)
can be bounded by a k-cell. So S is

a subset of a k-cell, which is compact in
(
Rk, d2

)
by the lemma above. Furthermore, because S is

assumed to be closed in
(
Rk, d2

)
, by Theorem 3.6, we know that S is compact itself. Therefore we

have proved the following theorem.

Theorem 3.9. In
(
Rk, d2

)
, a closed and bounded set S must be compact.

Combining this theorem with Theorem 3.4 and 3.5, we have the well-known Heine-Borel theorem.

Theorem 3.10 (Heine-Borel). In
(
Rk, d2

)
, a set S is compact iff it is closed and bounded.
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Heine-Borel theorem states that in
(
Rk, d2

)
, to check whether a set is compact, we can instead

check whether the set is closed and bounded. This greatly simplifies our job, since the definition of
compactness involving open covers is not easy to check in most cases.

Keep in mind that Heine-Borel theorem only works in Euclidean spaces
(
Rk, d2

)
. In general

metric spaces (X, d), although compactness always implies closedness plus boundedness, the reverse
is not true in general. For example, in (R++, d2), the set (0, 1] is closed and bounded, but not

compact (consider the open cover
{(

1/n,+∞
)}∞

n=1
). For another example, in (R, d), where d is the

discrete metric, the set [0, 1] is closed and bounded, but not compact. In fact, under the discrete
metric, a set is compact iff it is finite (exercise).

3.3 Sequential Compactness

There is another notion of compactness, called sequential compactness.

Definition 3.11. Let (X, d) be a metric space, and S a subset of X. The set S is sequentially
compact iff any sequence (xn) in S has a subsequence convergent to some x∗ ∈ S.

Theorem 3.12. Let (X, d) be a metric space, and S a subset of X. The set S is compact iff it is
sequentially compact.

This equivalence holds in general metric spaces3, but here we will just provide the proof in

Euclidean spaces
(
Rk, d2

)
.

Proof. ”⇒”:

If S in
(
Rk, d2

)
is compact, then it is bounded. Then any sequence (xn) in S must be bounded.

By Bolzano-Weierstrass theorem, (xn) has a subsequence convergent to some x∗ ∈ Rk. Then by the
sequential definition of closed sets, we have x∗ ∈ S. Therefore, S is sequentially compact.

”⇐” :
If S in

(
Rk, d2

)
is sequentially compact, then it must be closed; otherwise we can find a sequence

(xn) in S convergent to some x∗ outside S, and any subsequence of (xn) must also converge to x∗ /∈ S,
so it does not have a subsequence convergent to some point in S.

Also, the set S must also be bounded. Otherwise we can construct a sequence (xn) s.t.
d2 (xn, 0) > n, and so (xn) does not even have a convergent subsequence. Therefore, S is both
closed and bounded, and therefore compact.

4 Cauchy Sequences and Completeness

Definition 4.1. In metric space (X, d), a sequence (xn) is a Cauchy sequence iff ∀ ε > 0,
∃ N ∈ N s.t.

d (xm, xn) < ε

for any m,n > N .

Clearly, Cauchy sequences must be bounded just like convergent sequences. This is left as an
exercise.

3However, the two notions are not the same in topological spaces, which is a generalization of metric spaces and
is out of the scope of our math camp.
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Proposition 4.2. In metric space (X, d), a convergent sequence (xn) is a Cauchy sequence.

Proof. Let the limit of (xn) be x.
Take any ε > 0. I want to find N s.t. d (xm, xn) < ε for any m,n > N .
Because xn → x, there exists N s.t. d (xk, x) < ε/2 for any k > N . Therefore, for any m,n > N ,

we have
d (xm, xn) ≤ d (xm, x) + d (xn, x) < ε/2 + ε/2 = ε

However, a Cauchy sequence may fail to be convergent, for example the sequence
(
1/n

)
in

(R++, d2). If the metric space (X, d) has the property that every Cauchy sequence converges, then
we call it a complete metric space. The metric space (R++, d2) is not complete.

Definition 4.3. Let (X, d) be a metric space, and S a subset of X. The set S is a complete set
iff any Cauchy sequence in S converges to a limit point in S.

A metric space (X, d) is a complete metric space iff X is a complete set in (X, d).

Completeness is stronger than closedness, but weaker than compactness.
A complete set S must be closed. Otherwise we can find a sequence (xn) in S convergent to a

point outside S. Because (xn) is Cauchy, this contradicts the completeness of S.
The next result states that a compact set S must be complete.

Proposition 4.4. Let (X, d) be a metric space, and S a subset of X. If the set S is compact, then
it is complete.

Proof. Take any Cauchy sequence (xn) in S. We want to find an x ∈ S s.t. xn → x.
Because S is compact, and so is sequentially compact, we can find a subsequence

(
xnk

)
conver-

gent to some x ∈ S.
Now we only need to show xn → x
Take any ε > 0. We want to find N s.t. d (xn, x) < ε for any n > N .
Because (xn) is Cauchy, there exists N s.t. d (xm, xn) < ε/2 for any m,n > N .
Because xnk

→ x, there exists K s.t. nK > N and d
(
xnK , x

)
< ε/2.

Then for any n > N , we have

d (xn, x) ≤ d
(
xn, xnK

)
+ d

(
xnK , x

)
< ε/2 + ε/2 = ε

In the proof above, the candidate x for Cauchy sequence limit is provided by the sequential
compactness of S. Then the trick to prove xn → x is to bind the whole sequence to the convergent
subsequence using Cauchy, and then bind the subsequence to the limit using its convergence.

Using the same trick, we can show that the Euclidean spaces
(
Rk, d2

)
are complete.

Proposition 4.5. The Euclidean space
(
Rk, d2

)
is a complete metric space.

The proof of this result is left as an exercise. Notice that the candidate x for Cauchy sequence
limit is provided by Bolzano-Weierstrass theorem.
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4.1 Contraction Mapping Theorem

This subsection discusses an important fixed-point result in complete metric spaces, known as Con-
traction Mapping theorem or Banach Fixed Point theorem. This result has important implications
in dynamic programming.

A function is called a self-map iff it maps its domain to itself, i.e. f : X → X. Note that a
self-map need not be surjective or injective.

A point x∗ ∈ X is called a fixed point of the self-map f : X → X, iff f (x∗) = x∗. Intuitively,
the fixed point x∗ does not ”move away” if we apply f to it.

Definition 4.6. Let (X, d) be a metric space. A self-map f : X → X is said to be a contraction
iff ∃ real λ < 1 s.t.

d
(
f (x) , f

(
x′
))

≤ λ · d
(
x, x′

)
for any x, x′ ∈ X.

Now we state the theorem.

Theorem 4.7 (Contraction Mapping Theorem). Let (X, d) be a complete metric space, and f :
X → X a contraction. Then f has a unique fixed point x∗. Further, for any x ∈ X, we have
limn→∞ fn (x) = x∗.

The notation fn (x) means to apply f to x n times, i.e. f2 (x) := f
(
f (x)

)
, f3 (x) = f

(
f
(
f (x)

))
,

and so on.
Outline of the proof:

1. Show that the sequence
(
fn (x0)

)
is Cauchy for an arbitrary x0 ∈ X. So by completeness of

(X, d),
(
fn (x0)

)
converges to some x∗ ∈ X.

2. Show that x∗ := limn→∞ f (n) (x0) is indeed a fixed point of f .

3. Show that x∗ is the unique fixed point of f .

4. Show that fn (x) → x∗ for any starting point x ∈ X.

Proof. Arbitrarily take x0 ∈ X. Define xn := fn (x0), for any n ∈ N.
Step 1: WTS (xn) is Cauchy
Take any ε > 0, we want to find N s.t. d (xm, xn) < ε for any m,n > N .

Because f is a contraction, we have d
(
f (x) , f

(
x′
))

≤ λ · d
(
x, x′

)
for some λ < 1.

LetN be s.t. λN < (1− λ) ε/d (x0, x1). This is possible because λ
N → 0, and (1− λ) ε/d (x0, x1) >

0 4.
WTS: d (xm, xn) < ε for any m,n > N .
Since

d (xk, xk+1) = d
(
f (xk−1) , f (xk)

)
≤ λd (xk−1, xk)

we have,

4If d (x0, x1) = 0, it is obvious that f : x → x is not a contraction.
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d (xk, xk+1) ≤ λd (xk−1, xk)

≤ λ2d (xk−2, xk−1)

≤ · · ·
≤ λkd (x0, x1)

Take any m,n > N . Without loss of generality, assume that m ≤ n, and we have

d (xm, xn) ≤ d (xm, xm+1) + d (xm+1, xm+2) + · · ·+ d (xn−1, xn)

≤ λmd (x0, x1) + λm+1d (x0, x1) + · · ·+ λn−1d (x0, x1)

= λmd (x0, x1)
(
1 + λ+ · · ·+ λn−m−1

)
= λmd (x0, x1)

1− λn−m

1− λ
< λNd (x0, x1)

1

1− λ

<
(1− λ) ε

d (x0, x1)
· d (x0, x1)

1

1− λ
= ε

As a result, we have shown that (xn) is Cauchy.
Because (X, d) is a complete metric space, (xn) converges to some limit x∗ ∈ X.
Step 2: WTS f (x∗) = x∗

I want to show this by showing d
(
f (x∗) , x∗

)
= 0.

It is sufficient to show that d
(
f (x∗) , x∗

)
< ε for any ε > 0.

Take any ε > 0.
Because xn → x∗, there exists N s.t. d (xn, x

∗) < ε/2 for any n ≥ N .
Then we have

d
(
f
(
x∗

)
, x∗

)
≤ d

(
f
(
x∗

)
, xN+1

)
+ d

(
xN+1, x

∗)
= d

(
f
(
x∗

)
, f (xN )

)
+ d

(
xN+1, x

∗)
≤ λd

(
x∗, xN

)
+ d

(
xN+1, x

∗)
< λ · ε/2 + ε/2 < ε

Step 3: WTS x∗ is the unique fixed point of f
Assume by contradition that ∃x̂ ∈ S, x̂ ̸= x∗ such that f (x̂) = x̂. Then d

(
f (x̂) , f (x∗)

)
=

d (x̂, x∗) > 0, i.e. λ = 1. Therefore f is not a contraction. Contradiction!
Step 4: WTS fn (x) → x∗ for any starting point x ∈ X
Take ∀y0 ∈ S, y0 ̸= x0 and y∗ := limn→∞ f (n)(y0) ∈ S (from Step 1 we know that such y∗ exists).

WTS y∗ = x∗, i.e. d(x∗, y∗) = 0. It suffices to show that d (y∗, x∗) < ε for any ε > 0.
Denote yn := f (n)(y0). Let N1 be such that λN1 < ε/(3d(x0, y0)). Then we have d(xn, yn) ≤

λnd(x0, y0) ≤ λN1d(x0, y0) < ε/3, ∀n ≥ N1.
Also, as we have xn → x∗, yn → y∗, there exists N2 s.t. d(xn, x

∗) < ε/3, d(yn, y
∗) < ε/3 for any

n ≥ N2.
Take N := max{N1, N2}, then for any n ≥ N , we have:

d(x∗, y∗) ≤ d(xn, x
∗) + d(yn, y

∗) + d(xn, yn)

< ε/3 + ε/3 + ε/3 = ε
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OR: Step 4 directly follows from Steps 1,2 and 3, because by Step 1 for any y ∈ X we have
y∗ := limn→∞ f (n)(y) exists and by Step 2 y∗ = f(y∗). By Step 3 we see that y∗ = a ∈ X for
∀y ∈ X.

The completeness of the metric space plays a central role in Contraction Mapping theorem,
because it gives us the limit x∗ of the sequence

(
fn (x)

)
, which turns out to be the fixed point of f

we are searching for.
Without completeness of the metric space, the result is not true. For example, in

(
R\ {0} , d2

)
,

the function f (x) = x/2 is a contraction, but it does not have a fixed point.

5 Continuity of Functions

5.1 Limits of Functions

So far we defined the notion of limit for sequences. Now let’s do it for functions.

Definition 5.1. Let (X, dX) and (Y, dY ) be metric spaces. Let S be a subset of X, function
f : S → Y , and x0 ∈ S′ (a limit point of S).

We say that y0 is a limit of f at x0, iff ∀ ε > 0, ∃ δ > 0 s.t.

f((Bδ(x0) ∩ S)\{x0}) ⊂ Bε(y0).

In this case, we denote limx→x0 f (x) = y0.

Notice that x0 has to be a limit point of the domain S, since we have to make sure that there
exists x ∈ S s.t. 0 < d (x, x0) < δ, no matter how small δ is. However, x0 is allowed to be outside the
domain S5. For example, consider the function f : (0, 1) → R defined as f (x) = 2x. It makes sense
to talk about the limit of f at 1, although 1 is not in the domain of f . In this case, limx→1 f (x) = 2.
(In Rk, we always use the Euclidean distance d2 by default, unless stated otherwise.)

The concept of the limit of f at x0 has nothing to do with the value of f at x0. Instead, it
captures the behavior of the function f only nearby x0 but not at x0. For example, consider the
function f : R → R defined as

f (x) :=

{
2x, if x ̸= 1
0, if x = 1

Notice that f (1) = 0, but limx→1 f (x) = 2. (Again, d2 is used by default.)
Similar to the limit of a sequence, we can use triangle inequality to show that limit of f at

x0 is unique, if exists. This enables us to talk about ”the” limit of f at x0, and use the notation
limx→x0 f (x) without ambiguity.

The next theorem reveals the relation of the limit of a function to the limit of sequences.

Theorem 5.2. Let (X, dX) and (Y, dY ) be metric spaces. Let S be a subset of X, function f : S →
Y , and x0 ∈ S′. Then the limit of f at x0 is y0 iff the sequence

(
f (xn)

)
converges to y0 for any

sequence (xn) in S\{x0} that converges to x0.

5To allow x0 to be outside the domain S is an important generality to maintain. We know that the derivative of
a single variable function f at x0 is defined as

f ′ (x0) := lim
x→x0

f (x)− f (x0)

x− x0

Clearly, the point x0 is not in the domain of the slope function s (x) := f(x)−f(x0)
x−x0

, since the denominator cannot be
0. However, we are still able to talk about the limit of s (x) at x0.
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Proof. ⇒:
Take any sequence (xn) in S convergent to x0 s.t. xn ̸= x0 for any n.
WTS: f (xn) → y0
Take any ε > 0. We want to find N s.t. dY

(
f (xn) , y0

)
< ε for any n > N .

Because limx→x0 f (x) = y0, there exists δ > 0 s.t. dY
(
f (x) , y0

)
< ε for any x ∈ S with

0 < dX (x, x0) < δ.
Because xn → x0, there exists N s.t. dX (xn, x0) < δ for any n > N .
Take any n > N , because xn ̸= x0, we have 0 < dX (xn, x0) < δ, and so dY

(
f (xn) , y0

)
< ε.

⇐:
Suppose that y0 is not a limit of f at x0. Then there exists ε̂ > 0 s.t. there is no δ > 0 s.t.

dY
(
f (x) , y0

)
< ε̂ for any x ∈ S with 0 < dX (x, x0) < δ.

Then for any n ∈ N, we can find xn ∈ S s.t. 0 < dX (xn, x0) < 1/n, but dY
(
f (xn) , y0

)
≥ ε̂.

Clearly, the sequence xn → x0, and xn ̸= x0 for any n, but
(
f (xn)

)
does not converge to y0.

This contradicts our assumption.

Because of the close link of the function limit to sequence limit, as revealed by the theorem
above, Proposition 2.6 and Proposition 2.7 also works for function limit. We state them as the
following two propositions.

Proposition 5.3. Let (X, dX) be a metric space, S be a subset of X, and x0 ∈ S′. Let f be a
function from S to Rk. Then limx→x0 f (x) exists iff limx→x0 fi (x) exists for any i = 1, 2, . . . k.
Furthermore, when the limit exist, the i-th coordinate of limx→x0 f (x) is equal to limx→x0 fi (x).

Note that fi is used to denote the i-th coordinate of f , and so fi is a function from S to R.

Proposition 5.4. Let (X, dX) be a metric space, S be a subset of X, and x0 ∈ S′. Let f and g be
functions from S to R s.t. limx→x0 f (x) and limx→x0 g (x) exist. Then

(1) limx→x0

[
f (x) + g (x)

]
= limx→x0 f (x) + limx→x0 g (x),

(2) limx→x0

[
f (x) g (x)

]
= limx→x0 f (x) · limx→x0 g (x)

(3) limx→x0

(
1/f

)
= 1/ limx→x0 f (x), if limx→x0 f (x) ̸= 0.

5.2 Continuity

Definition 5.5. Let (X, dX) and (Y, dY ) be metric spaces. Let S be a subset of X, function
f : S → Y , and x0 ∈ S.

The function f is said to be continuous at x0 iff ∀ ε > 0, ∃ δ > 0 s.t.

f(Bδ(x0) ∩ S) ⊂ Bε(f(x0)).

The function f is said to be a continuous function iff f is continuous at x0 for all x0 ∈ S.

Here we allow x = x0, which is different from the definition of limx→x0 f (x). Also notice that
we require x0 to be in the domain S of the function f (otherwise f (x0) is not defined), but not
necessarily a limit point of the domain. In fact, if x0 ∈ S is not a limit point of S, i.e. x0 is an
isolated point of S, then f is continuous at x0 by definition.

The relation of continuity to the limit of functions is stated below.

Proposition 5.6. Let (X, dX) and (Y, dY ) be metric spaces. Let S be a subset of X, function
f : S → Y , and x0 ∈ S ∩ S′. Then the function f is continuous at x0 iff limx→x0 f (x) = f (x0).

Notice that this equivalence only works for x0’s that are both in the domain (to ensure ”f is
continuous at x0” is defined) and are a limit point of the domain (to ensure limx→x0 f (x) is defined).
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Theorem 5.7. Let (X, dX) and (Y, dY ) be metric spaces. Let S be a subset of X, function f : S →
Y , and x0 ∈ S. Then the function f is continuous at x0 iff f (xn) → f (x0) for any sequence (xn)
in S convergent to x0.

Simply put, f is continuous iff xn → x0 implies f (xn) → f (x0).

Proof. ⇒:
Take any sequence (xn) in S convergent to x0.
WTS: f (xn) → f (x0)
Take any ε > 0. We want to find N s.t. dY

(
f (xn) , f (x0)

)
< ε for any n > N .

Because f is continuous at x0, there exists δ > 0 s.t. dY
(
f (x) , f (x0)

)
< ε for any x ∈ S with

dX (x, x0) < δ.
Because xn → x0, there exists N s.t. dX (xn, x0) < δ for any n > N .
Take any n > N , we have dX (xn, x0) < δ, and so dY

(
f (xn) , f (x0)

)
< ε.

⇐:
If x0 /∈ S′, then f is continuous at x0 by definition.
If x0 ∈ S′, then by Theorem 5.2, the condition ”f (xn) → f (x0) for any sequence (xn) in S

convergent to x0” implies that limx→x0 f (x) = f (x0). Then by Proposition 5.6, f is continuous at
x0.

The theorem above reveals a direct link of continuity to convergence of sequences. Therefore,
many results in convergence of sequences also apply here. For example, the following results are
counterparts of Proposition 2.6 and 2.7.

Proposition 5.8. Let (X, dX) be a metric space, S be a subset of X, and x0 ∈ S. Consider a
function f : S → Rk. Then f is continuous at x0 iff fi : S → R is continuous at x0 for any
i = 1, 2, . . . , k.

Proposition 5.9. Let (X, dX) be a metric space, S be a subset of X, and x0 ∈ S. Let f and g be
functions from S to R that are continuous at x0. Then

(1) f + g is continuous at x0,
(2) f · g is continuous at x0, and
(3) 1/f is continuous at x0 if f (x0) ̸= 0.

The next theorem shows that the compound of two continuous function is also continuous.

Theorem 5.10. Let (X, dX), (Y, dY ), (Z, dZ) be metric spaces. Let set S be a subset of X, and
f : S → Y be a continuous function. Let T be a set s.t. f (S) ⊂ T ⊂ Y , and g : T → Z be a
continuous function. Then g ◦ f : S → Z is a continuous function.

The proof is left as an exercise.
It can be shown that many commonly used functions, such as xα, lnx, ex, and sinx, are all

continuous in their domain. Since by the two results above continuity is preserved under addition,
multiplication, and compounding, then roughly speaking, all functions constructed using those
”common” functions are continuous.

The next theorem provides yet another equivalent definition of continuity, which is known as
the topological definition of continuous functions.

Theorem 5.11. Let (X, dX) and (Y, dY ) be metric spaces, and function f : X → Y . The function
f is a continuous function iff f−1 (E) is open in (X, dX) for any set E open in (Y, dY ).
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Simply put, f is continuous iff its inverse image of an open set is also open.
Different from the previous sequential characterization that works for functions continuous at a

single particular point, this characterization only works for functions that are continuous everywhere.

Proof. ⇒:
Take any x ∈ f−1 (E). We want to find δ > 0 s.t. Bδ (x) ⊂ f−1 (E).
Because x ∈ f−1 (E), we have f (x) ∈ E. Because E is open in (Y, dY ), there exists ε > 0 s.t.

Bε

(
f (x)

)
⊂ E.

Because f is continuous at x, there exists δ > 0 s.t. f
(
Bδ (x)

)
⊂ Bε

(
f (x)

)
⊂ E. Therefore, we

have Bδ (x) ⊂ f−1 (E).
⇐:
Take any ε > 0. We want to find δ > 0 s.t. f

(
Bδ (x)

)
⊂ Bε

(
f (x)

)
.

Because Bε

(
f (x)

)
is open in (Y, dY ), the set f−1

(
Bε

(
f (x)

))
is open in (X, dX). Because

f (x) ∈ Bε

(
f (x)

)
, we have x ∈ f−1

(
Bε

(
f (x)

))
. Therefore, the exists δ > 0 s.t. Bδ (x) ⊂

f−1
(
Bε

(
f (x)

))
. As a result, f

(
Bδ (x)

)
⊂ Bε

(
f (x)

)
.

As a corollary, f is continuous iff its inverse image of a closed set is also closed. To prove this,
we only need to use the fact that the complement of an open set is closed, and that f−1 (Ec) =(
f−1 (E)

)c
.

Although taking the inverse image of a continuous function preserves openness and closedness,
the image of an open set (or closed set) may not be open (or closed). For example, consider the
function f : R → R defined as f (x) := x2. The image of the open set (−1, 1) under f is [0, 1),
which is not open in the codomain R. For another example, consider the function g : R++ → R
defined as g (x) := 1/x. The image of the closed set [1,+∞) under g is (0, 1], which is not closed in
the codomain R.

5.3 Weierstrass Theorem

The following theorem states that a continuous image of a compact set is also compact.

Theorem 5.12. Let (X, dX) and (Y, dY ) be metric spaces, and function f : X → Y is continuous.
Then f (K) is compact in (Y, dY ) for any K compact in (X, dX).

Proof. Take any K compact in (X, dX). WTS: f (K) is compact in (Y, dY )
Take any open cover {Eα}α∈A of f (K). We want to find a finite B ⊂ A s.t. {Eα}α∈B is an

open cover of f (K).
First, I claim that

{
f−1 (Eα)

}
α∈A is an open cover of K.

Because each Eα is open in (Y, dY ), the set f−1 (Eα) is open in (X, dX). Take any x ∈ K. We
have f (x) ∈ f (K). Because {Eα}α∈A covers f (K), there exists some α̂ ∈ A s.t. f (x) ∈ Eα̂. So
x ∈ f−1 (Eα̂). Therefore,

{
f−1 (Eα)

}
α∈A is an open cover of K.

Because K is compact, there exists some finite set B ⊂ A s.t.
{
f−1 (Eα)

}
α∈B covers K. Now,

it is sufficient to show that {Eα}α∈B is an open cover of f (K).
Take any y ∈ f (K). There exists x̂ ∈ K s.t. f (x̂) = y. Because

{
f−1 (Eα)

}
α∈B covers K, there

exists α̂ ∈ B s.t. x̂ ∈ f−1 (Eα̂). Therefore, y = f (x̂) ∈ Eα̂. Therefore, {Eα}α∈B is an open cover of
f (K).

Although taking the image of a continuous function preserves compactness, the inverse image
of a compact set may not be compact. For example, consider the function f : R++ → R defined as
g (x) := 1/x. The inverse image of the compact set [0, 1] under f is [1,+∞), which is not compact.
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The next result states that a compact set in (R, d2) has a maximum and a minimum.

Claim 5.13. Let K be a compact set in (R, d2). Then there exists x∗ ∈ K s.t. x∗ ≥ x for any
x ∈ K, and there exists x∗ ∈ K s.t. x∗ ≤ x for any x ∈ K.

Proof. Because K is compact in (R, d2), we know that K is bounded, i.e. there exists some Br (x) ⊃
K. Therefore, x+ r is an upper bound of K. By l.u.b. property of R, there exists the least upper
bound supK.

Now I claim that supK ∈ K.
Suppose supK /∈ K. Then supK is a limit point of K, because for any ε > 0, there exists

x ∈ K s.t. x > supK − ε. Because K is closed, we know that K ′ ⊂ K, and thus supK ∈ K. This
contradicts the hypothesis we started with.

Let x∗ := supK, and we have x∗ ∈ K and x∗ ≥ x for any x ∈ K.
Symmetrically, let x∗ := infK, and we can show that x∗ ∈ K and x∗ ≤ x for any x ∈ K.

Combining the two results above, we have Weierstrass theorem stated below.

Theorem 5.14 (Weierstrass). Let (X, dX) be a metric space, and function f : X → R is continuous.
Let S be a compact set in (X, dX). There exists x∗ ∈ S s.t. f (x∗) ≥ f (x) for any x ∈ S, and there
exists x∗ ∈ S s.t. f (x∗) ≤ f (x) for any x ∈ S.

Again, when we say f : X → R is continuous, we use the Euclidean metric d2 in the codomain
R by default.

Proof. By Theorem 5.12, we know that f (S) is compact in (R, d2). Therefore, there exists y∗ ∈ f (S)
s.t. y∗ ≥ f (x) for any x ∈ S. By definition of the image f (S), there exists x∗ ∈ S s.t. f (x∗) = y∗,
and therefore f (x∗) ≥ f (x) for any x ∈ S.

Symmetrically, we can find x∗.

In economics, it is standard to assume that every entity in the economy is maximizing some
objective function. Weierstrass theorem implies that each entity’s maximization problem must have
a solution, if the entity’s objective function is continuous and the set of alternatives available to the
entity is compact.
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